-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain2_seq.py
583 lines (515 loc) · 23.5 KB
/
train2_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import argparse
import json
import os, sys
import csv
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.tensorboard import SummaryWriter
import torch.nn as nn
torch.backends.cudnn.benchmark = True
from scheduler import CyclicCosineDecayLR
from config_seq import GlobalConfig
from model2_seq import TransFuser
from data2_seq import CARLA_Data
import torchvision
kw='final_'# keyword for the pretrained model in finetune
# data_root = './MultiModeBeamforming/'#path to the dataset
torch.cuda.empty_cache()
parser = argparse.ArgumentParser()
parser.add_argument('--id', type=str, default='test', help='Unique experiment identifier.')
parser.add_argument('--device', type=str, default='cuda', help='Device to use')
parser.add_argument('--epochs', type=int, default=150, help='Number of train epochs.')
parser.add_argument('--lr', type=float, default=5e-4, help='Learning rate.')
parser.add_argument('--batch_size', type=int, default=6, help='Batch size') # default=24
parser.add_argument('--logdir', type=str, default='log', help='Directory to log data to.') # /ibex/scratch/tiany0c/log
parser.add_argument('--add_velocity', type = int, default=1, help='concatenate velocity map with angle map')
parser.add_argument('--add_mask', type=int, default=0, help='add mask to the camera data')
parser.add_argument('--enhanced', type=int, default=1, help='use enhanced camera data')
parser.add_argument('--filtered', type=int, default=0, help='use filtered lidar data')
parser.add_argument('--loss', type=str, default='focal', help='crossentropy or focal loss')
parser.add_argument('--scheduler', type=int, default=1, help='use scheduler to control the learning rate')
parser.add_argument('--load_previous_best', type=int, default=0, help='load previous best pretrained model ')
parser.add_argument('--temp_coef', type=int, default=1, help='apply temperature coefficience on the target')
parser.add_argument('--train_adapt_together', type=int, default=1, help='combine train and adaptation dataset together')
parser.add_argument('--finetune', type=int, default=0, help='first train on development set and finetune on 31-34 set')
parser.add_argument('--Test', type=int, default=0, help='Test')
parser.add_argument('--augmentation', type=int, default=1, help='data augmentation of camera and lidar')
parser.add_argument('--angle_norm', type=int, default=1, help='normlize the gps loc with unit, angle can be obtained')
parser.add_argument('--custom_FoV_lidar', type=int, default=1, help='Custom FoV of lidar')
parser.add_argument('--add_seg', type=int, default=0, help='add segmentation on 31&32 images')
parser.add_argument('--ema', type=int, default=0, help='exponential moving average')
parser.add_argument('--flip', type=int, default=0, help='flip all the data to augmentation')
args = parser.parse_args()
args.logdir = os.path.join(args.logdir, args.id)
writer = SummaryWriter(log_dir=args.logdir)
class Engine(object):
"""Engine that runs training and inference.
Args
- cur_epoch (int): Current epoch.
- print_every (int): How frequently (# batches) to print loss.
- validate_every (int): How frequently (# epochs) to run validation.
"""
def __init__(self, cur_epoch=0, cur_iter=0):
self.cur_epoch = cur_epoch
self.cur_iter = cur_iter
self.bestval_epoch = cur_epoch
self.train_loss = []
self.val_loss = []
self.DBA = []
self.bestval = 0
if args.finetune:
self.DBAft = [0]
if args.loss == 'ce':#crossentropy loss
self.criterion = torch.nn.CrossEntropyLoss(reduction='mean')
elif args.loss == 'focal':#focal loss
self.criterion = FocalLoss()
def train(self):
loss_epoch = 0.
num_batches = 0
model.train()
running_acc = 0.0
gt_beam_all = []
pred_beam_all = []
# Train loop
pbar=tqdm(dataloader_train, desc='description')
for data in pbar:
# efficiently zero gradients
optimizer.zero_grad(set_to_none=True)
# create batch and move to GPU
fronts = []
lidars = []
radars = []
gps = data['gps'].to(args.device, dtype=torch.float32)
for i in range(config.seq_len):
fronts.append(data['fronts'][i].to(args.device, dtype=torch.float32))
lidars.append(data['lidars'][i].to(args.device, dtype=torch.float32))
radars.append(data['radars'][i].to(args.device, dtype=torch.float32))
pred_beams = model(fronts, lidars, radars, gps)
gt_beamidx = data['beamidx'][0].to(args.device, dtype=torch.long)
gt_beams = data['beam'][0].to(args.device, dtype=torch.float32)
running_acc += (torch.argmax(pred_beams, dim=1) == gt_beamidx).sum().item()
if args.temp_coef:#temperature coefficiece
loss = self.criterion(pred_beams, gt_beams)
else:
loss = self.criterion(pred_beams, gt_beamidx)
gt_beam_all.append(data['beamidx'][0])
pred_beam_all.append(torch.argsort(pred_beams, dim=1, descending=True).cpu().numpy())
loss.backward()
loss_epoch += float(loss.item())
pbar.set_description(str(loss.item()))
num_batches += 1
optimizer.step()
if args.ema:# Exponential Moving Averages
ema.update() # during training, after update parameters, update shadow weights
self.cur_iter += 1
pred_beam_all = np.squeeze(np.concatenate(pred_beam_all, 0))
gt_beam_all = np.squeeze(np.concatenate(gt_beam_all, 0))
curr_acc = compute_acc(pred_beam_all, gt_beam_all, top_k=[1, 2, 3])
DBA = compute_DBA_score(pred_beam_all, gt_beam_all, max_k=3, delta=5)
print('Train top beam acc: ',curr_acc, ' DBA score: ',DBA)
loss_epoch = loss_epoch / num_batches
self.train_loss.append(loss_epoch)
self.cur_epoch += 1
writer.add_scalar('DBA_score_train', DBA, self.cur_epoch)
for i in range(len(curr_acc)):
writer.add_scalars('curr_acc_train', {'beam' + str(i):curr_acc[i]}, self.cur_epoch)
writer.add_scalar('curr_loss_train', loss_epoch, self.cur_epoch)
if args.finetune:
if DBA>self.DBAft[-1]:
self.DBAft.append(DBA)
print(DBA, self.DBAft[-2], 'save new model')
torch.save(model.state_dict(), os.path.join(args.logdir, 'all_finetune_on_' + kw + 'model.pth'))
torch.save(optimizer.state_dict(), os.path.join(args.logdir, 'all_finetune_on_' + kw + 'optim.pth'))
else:
print('best',self.DBAft[-1])
def validate(self):
if args.ema:#Exponential Moving Averages
ema.apply_shadow() # before eval,apply shadow weights
model.eval()
running_acc = 0.0
with torch.no_grad():
num_batches = 0
wp_epoch = 0.
gt_beam_all=[]
pred_beam_all=[]
scenario_all = []
# Validation loop
for batch_num, data in enumerate(tqdm(dataloader_val), 0):
# create batch and move to GPU
fronts = []
lidars = []
radars = []
gps = data['gps'].to(args.device, dtype=torch.float32)
for i in range(config.seq_len):
fronts.append(data['fronts'][i].to(args.device, dtype=torch.float32))
lidars.append(data['lidars'][i].to(args.device, dtype=torch.float32))
radars.append(data['radars'][i].to(args.device, dtype=torch.float32))
velocity=torch.zeros((data['fronts'][0].shape[0])).to(args.device, dtype=torch.float32)
pred_beams = model(fronts, lidars, radars, gps)
gt_beam_all.append(data['beamidx'][0])
gt_beams = data['beam'][0].to(args.device, dtype=torch.float32)
gt_beamidx = data['beamidx'][0].to(args.device, dtype=torch.long)
pred_beam_all.append(torch.argsort(pred_beams, dim=1, descending=True).cpu().numpy())
running_acc += (torch.argmax(pred_beams, dim=1) == gt_beamidx).sum().item()
if args.temp_coef:
loss = self.criterion(pred_beams, gt_beams)
else:
loss = self.criterion(pred_beams, gt_beamidx)
wp_epoch += float(loss.item())
num_batches += 1
scenario_all.append(data['scenario'])
pred_beam_all=np.squeeze(np.concatenate(pred_beam_all,0))
gt_beam_all=np.squeeze(np.concatenate(gt_beam_all,0))
scenario_all = np.squeeze(np.concatenate(scenario_all,0))
#calculate accuracy and DBA score according to different scenarios
scenarios = ['scenario31', 'scenario32', 'scenario33', 'scenario34']
for s in scenarios:
beam_scenario_index = np.array(scenario_all) == s
if np.sum(beam_scenario_index) > 0:
curr_acc_s = compute_acc(pred_beam_all[beam_scenario_index], gt_beam_all[beam_scenario_index], top_k=[1,2,3])
DBA_score_s = compute_DBA_score(pred_beam_all[beam_scenario_index], gt_beam_all[beam_scenario_index], max_k=3, delta=5)
print(s, ' curr_acc: ', curr_acc_s, ' DBA_score: ', DBA_score_s)
for i in range(len(curr_acc_s)):
writer.add_scalars('curr_acc_val', {s + 'beam' + str(i):curr_acc_s[i]}, self.cur_epoch)
writer.add_scalars('DBA_score_val', {s:DBA_score_s}, self.cur_epoch)
curr_acc = compute_acc(pred_beam_all, gt_beam_all, top_k=[1,2,3])
DBA_score_val = compute_DBA_score(pred_beam_all, gt_beam_all, max_k=3, delta=5)
wp_loss = wp_epoch / float(num_batches)
tqdm.write(f'Epoch {self.cur_epoch:03d}, Batch {batch_num:03d}:' + f' Wp: {wp_loss:3.3f}')
print('Val top beam acc: ',curr_acc, 'DBA score: ', DBA_score_val)
writer.add_scalars('DBA_score_val', {'scenario_all':DBA_score_val}, self.cur_epoch)
writer.add_scalar('curr_loss_val', wp_loss, self.cur_epoch)
self.val_loss.append(wp_loss)
self.DBA.append(DBA_score_val)
if args.ema:#Exponential Moving Averages
ema.restore() # after eval, restore model parameter
def test(self):
model.eval()
with torch.no_grad():
pred_beam_all=[]
pred_beam_confidence = []
# Validation loop
for batch_num, data in enumerate(tqdm(dataloader_test), 0):
# create batch and move to GPU
fronts = []
lidars = []
radars = []
gps = data['gps'].to(args.device, dtype=torch.float32)
for i in range(config.seq_len):
fronts.append(data['fronts'][i].to(args.device, dtype=torch.float32))
lidars.append(data['lidars'][i].to(args.device, dtype=torch.float32))
radars.append(data['radars'][i].to(args.device, dtype=torch.float32))
pred_beams = model(fronts, lidars, radars, gps)
pred_beam_all.append(torch.argsort(pred_beams, dim=1, descending=True).cpu().numpy())
sm=torch.nn.Softmax(dim=1)
beam_confidence=torch.max(sm(pred_beams), dim=1)
pred_beam_confidence.append(beam_confidence[0].cpu().numpy())
pred_beam_all = np.squeeze(np.concatenate(pred_beam_all, 0))
pred_beam_confidence = np.squeeze(np.concatenate(pred_beam_confidence, 0))
save_pred_to_csv(pred_beam_all, top_k=[1, 2, 3], target_csv='beam_pred.csv')
df = pd.DataFrame(data=pred_beam_confidence)
df.to_csv('beam_pred_confidence_seq.csv')
def save(self):
save_best = False
print('best', self.bestval, self.bestval_epoch)
if self.DBA[-1] >= self.bestval:
self.bestval = self.DBA[-1]
self.bestval_epoch = self.cur_epoch
save_best = True
# Create a dictionary of all data to save
log_table = {
'epoch': self.cur_epoch,
'iter': self.cur_iter,
'bestval': self.bestval,
'bestval_epoch': self.bestval_epoch,
'train_loss': self.train_loss,
'val_loss': self.val_loss,
'DBA': self.DBA,
}
# Save ckpt for every epoch
# Save the recent model/optimizer states
torch.save(model.state_dict(), os.path.join(args.logdir, 'final_model.pth'))
# # Log other data corresponding to the recent model
with open(os.path.join(args.logdir, 'recent.log'), 'w') as f:
f.write(json.dumps(log_table))
if save_best:# save the bestpretrained model
torch.save(model.state_dict(), os.path.join(args.logdir, 'best_model.pth'))
torch.save(optimizer.state_dict(), os.path.join(args.logdir, 'best_optim.pth'))
tqdm.write('====== Overwrote best model ======>')
elif args.load_previous_best:
model.load_state_dict(torch.load(os.path.join(args.logdir, 'best_model.pth')))
optimizer.load_state_dict(torch.load(os.path.join(args.logdir, 'best_optim.pth')))
tqdm.write('====== Load the previous best model ======>')
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=0.25):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
def __call__(self, input, target):
if len(target.shape) == 1:
target = torch.nn.functional.one_hot(target, num_classes=64)
loss = torchvision.ops.sigmoid_focal_loss(input, target.float(), alpha=self.alpha, gamma=self.gamma,
reduction='mean')
return loss
class EMA():
def __init__(self, model, decay):
self.model = model
self.decay = decay
self.shadow = {}
self.backup = {}
def register(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
self.shadow[name] = param.data.clone()
def update(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name]
self.shadow[name] = new_average.clone()
def apply_shadow(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.shadow
self.backup[name] = param.data
param.data = self.shadow[name]
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
def save_pred_to_csv(y_pred, top_k=[1, 2, 3], target_csv='beam_pred.csv'):
"""
Saves the predicted beam results to a csv file.
Expects y_pred: n_samples x N_BEAMS, and saves the top_k columns only.
"""
cols = [f'top-{i} beam' for i in top_k]
df = pd.DataFrame(data=y_pred[:, np.array(top_k) - 1]+1, columns=cols)
df.index.name = 'index'
df.to_csv(target_csv)
def compute_acc(y_pred, y_true, top_k=[1,2,3]):
""" Computes top-k accuracy given prediction and ground truth labels."""
n_top_k = len(top_k)
total_hits = np.zeros(n_top_k)
n_test_samples = len(y_true)
if len(y_pred) != n_test_samples:
raise Exception('Number of predicted beams does not match number of labels.')
# For each test sample, count times where true beam is in k top guesses
for samp_idx in range(len(y_true)):
for k_idx in range(n_top_k):
hit = np.any(y_pred[samp_idx,:top_k[k_idx]] == y_true[samp_idx])
total_hits[k_idx] += 1 if hit else 0
# Average the number of correct guesses (over the total samples)
return np.round(total_hits / len(y_true)*100, 4)
def compute_DBA_score(y_pred, y_true, max_k=3, delta=5):
"""
The top-k MBD (Minimum Beam Distance) as the minimum distance
of any beam in the top-k set of predicted beams to the ground truth beam.
Then we take the average across all samples.
Then we average that number over all the considered Ks.
"""
n_samples = y_pred.shape[0]
yk = np.zeros(max_k)
for k in range(max_k):
acc_avg_min_beam_dist = 0
idxs_up_to_k = np.arange(k + 1)
for i in range(n_samples):
aux1 = np.abs(y_pred[i, idxs_up_to_k] - y_true[i]) / delta
# Compute min between beam diff and 1
aux2 = np.min(np.stack((aux1, np.zeros_like(aux1) + 1), axis=0), axis=0)
acc_avg_min_beam_dist += np.min(aux2)
yk[k] = 1 - acc_avg_min_beam_dist / n_samples
return np.mean(yk)
def dataset_augmentation(root_csv):
# return augmentation on input dataset
# camera augmentation: total 7
# lidar augmentation: total 2
# radar augmentation: total 1
# return: ((camera_aug_num + 1) * (lidar_aug_num + 1) * (radar_aug_num + 1)) - 1
camera_aug_num = 7
lidar_aug_num = 2
radar_aug_num = 1
augmentation_set = []
for i in range(0, camera_aug_num + 1):
for j in range(0, lidar_aug_num + 1):
for k in range(0, radar_aug_num + 1):
if i == 0 and j == 0 and k == 0: # skip the original dataset
continue
augmentation_entry = CARLA_Data(root=val_root, root_csv=root_csv, config=config, test=False, augment={'camera':i, 'lidar':j, 'radar':k})
if augmentation_set == []:
augmentation_set = augmentation_entry
else:
augmentation_set = ConcatDataset([augmentation_set, augmentation_entry])
print('Augmented Dataset: ', root_csv, ' Samples: ', str(len(augmentation_set)))
return augmentation_set
# Config
config = GlobalConfig()
config.add_velocity = args.add_velocity
config.add_mask = args.add_mask
config.enhanced = args.enhanced
config.angle_norm = args.angle_norm
config.custom_FoV_lidar=args.custom_FoV_lidar
config.filtered = args.filtered
config.add_seg = args.add_seg
data_root = config.data_root # path to the dataset
import random
import numpy
seed = 100
random.seed(seed)
np.random.seed(seed) # numpy
torch.manual_seed(seed) # torch+CPU
torch.cuda.manual_seed(seed) # torch+GPU
torch.use_deterministic_algorithms(False)
g = torch.Generator()
g.manual_seed(seed)
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)
def createDataset(InputFile, OutputFile, Keyword):
RawFile = InputFile
CleanedFile = OutputFile +'.csv'
#Keyword = 'scenario34'
with open(RawFile) as infile, open(CleanedFile, 'w') as outfile:
reader = csv.DictReader(infile)
writer = csv.DictWriter(outfile,fieldnames=reader.fieldnames)
writer.writeheader()
for row in reader:
try:
if Keyword in row[reader.fieldnames[1]]:
writer.writerow(row)
except:
continue
trainval_root=data_root+'/Multi_Modal/'
train_root_csv='ml_challenge_dev_multi_modal.csv'
if not args.Test:
for keywords in ['scenario32','scenario33','scenario34']:
createDataset(trainval_root+train_root_csv, trainval_root+keywords,keywords)
print(trainval_root+keywords)
val_root = data_root + '/Adaptation_dataset_multi_modal/'
val_root_csv='ml_challenge_data_adaptation_multi_modal.csv'
for keywords in ['scenario31','scenario32','scenario33']:
createDataset(val_root+val_root_csv, val_root+keywords,keywords)
print(val_root + keywords)
# Data
if args.finetune and not args.Test:
adaptation_set = CARLA_Data(root=val_root, root_csv=val_root_csv, config=config,
test=False) # adaptation dataset 100 samples
dev34_set = CARLA_Data(root=trainval_root, root_csv='scenario34.csv', config=config, test=False)
dev34_set, _ = torch.utils.data.random_split(dev34_set, [25, len(dev34_set) - 25])
train_set = ConcatDataset([adaptation_set, dev34_set])
print('train_set:', len(train_set))
elif not args.train_adapt_together and not args.Test:
development_set = CARLA_Data(root=trainval_root, root_csv=train_root_csv, config=config,
test=False) # development dataset 11k samples
train_size = int(0.8 * len(development_set))
train_set, val_set = torch.utils.data.random_split(development_set,
[train_size, len(development_set) - train_size])
print('train_set:', train_size, 'val_set:', len(val_set))
dataloader_val = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=8, pin_memory=False)
if not args.Test:
if args.train_adapt_together and args.finetune:
raise Exception('train on 31 and finetune can not be done at the same time' )
if args.train_adapt_together and not args.finetune:
print('=======Merge dev and adaptation sets together')
development_set = CARLA_Data(root=trainval_root, root_csv=train_root_csv, config=config,
test=False) # development dataset 11k samples
adaptation_set = CARLA_Data(root=val_root, root_csv=val_root_csv, config=config,
test=False) # adaptation dataset 100 samples
if args.flip:
development_set_flip = CARLA_Data(root=trainval_root, root_csv=train_root_csv, config=config,
test=False, flip=True) # development dataset 11k samples
adaptation_set_flip = CARLA_Data(root=val_root, root_csv=val_root_csv, config=config,
test=False, flip=True) # adaptation dataset 100 samples
development_set = ConcatDataset([development_set, development_set_flip])
adaptation_set = ConcatDataset([adaptation_set, adaptation_set_flip])
# add augmentation to develoment set
if args.augmentation:
print('====== Augmentation on adaptation dataset for scenario 31, 32, 33')
augmentation_set_31 = dataset_augmentation(root_csv='scenario31.csv')
augmentation_set_32 = dataset_augmentation(root_csv='scenario32.csv')
augmentation_set_33 = dataset_augmentation(root_csv='scenario33.csv')
augmentation_set = ConcatDataset([augmentation_set_31, augmentation_set_32, augmentation_set_33])
development_set = ConcatDataset([development_set, augmentation_set])
train_set = ConcatDataset([development_set, adaptation_set])
train_size = int(0.9*len(train_set))
train_set, val_set = torch.utils.data.random_split(train_set, [train_size, len(train_set) - train_size])
print('train_set:', len(train_set), 'val_set:', len(val_set))
if args.Test:
test_root = data_root + '/Multi_Modal_Test/'
test_root_csv = 'ml_challenge_test_multi_modal.csv'
test_set = CARLA_Data(root=test_root, root_csv=test_root_csv, config=config, test=True)
print('test_set:', len(test_set))
dataloader_test = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=8, pin_memory=False)
else:
dataloader_train = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=8, pin_memory=True,
worker_init_fn=seed_worker, generator=g)
dataloader_val = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=8, pin_memory=False)
# Model
model = TransFuser(config, args.device)
model = torch.nn.DataParallel(model)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
if args.scheduler:#Cyclic Cosine Decay Learning Rate
scheduler = CyclicCosineDecayLR(optimizer,
init_decay_epochs=15,
min_decay_lr=2.5e-6,
restart_interval = 10,
restart_lr=12.5e-5,
warmup_epochs=10,
warmup_start_lr=2.5e-6)
trainer = Engine()
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
print ('======Total trainable parameters: ', params)
# Create logdir
if not os.path.isdir(args.logdir):
os.makedirs(args.logdir)
print('======Created dir:', args.logdir)
elif os.path.isfile(os.path.join(args.logdir, 'recent.log')):
print('======Loading checkpoint from ' + args.logdir)
with open(os.path.join(args.logdir, 'recent.log'), 'r') as f:
log_table = json.load(f)
# Load variables
trainer.cur_epoch = log_table['epoch']
if 'iter' in log_table: trainer.cur_iter = log_table['iter']
trainer.bestval = log_table['bestval']
trainer.train_loss = log_table['train_loss']
trainer.val_loss = log_table['val_loss']
trainer.DBA = log_table['DBA']
# # FOR TESTING ONLY
# Load checkpoint
if args.finetune:# finetune the pretrained model
if os.path.exists(os.path.join(args.logdir, 'all_finetune_on_'+ kw + 'model.pth')):
print('======loading last'+'all_finetune_on_'+ kw + 'model.pth')
model.load_state_dict(torch.load(os.path.join(args.logdir, 'all_finetune_on_'+ kw + 'model.pth')))
optimizer.load_state_dict(torch.load(os.path.join(args.logdir, 'all_finetune_on_' + kw + 'optim.pth')))
else:
print('======loading '+kw+' model')
model.load_state_dict(torch.load(os.path.join(args.logdir, kw+'model.pth')))
else:
print('======loading best_model')
model.load_state_dict(torch.load(os.path.join(args.logdir, 'best_model.pth')))
ema = EMA(model, 0.999)
if args.ema:
ema.register()
# Log args
with open(os.path.join(args.logdir, 'args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
if args.Test:
trainer.test()
print('Test finish')
else:
for epoch in range(trainer.cur_epoch, args.epochs):
print('epoch:',epoch)
trainer.train()
if not args.finetune:
trainer.validate()
trainer.save()
if args.scheduler:
print('lr', scheduler.get_lr())
scheduler.step()