-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathreadatom.c
915 lines (750 loc) · 30.6 KB
/
readatom.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/* ------- file: -------------------------- readatom.c --------------
Version: rh2.0
Author: Han Uitenbroek ([email protected])
Last modified: Wed Feb 26 16:11:25 2014 --
-------------------------- ----------RH-- */
/* --- Reads atomic model into Atom structure pointed to by atom.
Set keyword active == FALSE if the atomic model is to be used for
background opacity calculations. In this case no attempt will be
made to read collisional data.
Even for passive atoms NLTE populations can be read.
Note: Element abundance is taken from the abundance input file rather
than the atomic data file.
Note: - For LTE metals metal.n is just an alias for metal.nstar.
- For hydrogen memory for H.n gets allocated in distribute_nH
(hydrogen.c) when atmos.H_LTE is false and atmos.H is not active.
-- -------------- */
#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "rh.h"
#include "atom.h"
#include "atmos.h"
#include "spectrum.h"
#include "background.h"
#include "constant.h"
#include "error.h"
#include "inputs.h"
#include "statistics.h"
#define COMMENT_CHAR "#"
#define MAX_ABUND_ERROR 0.001
/* --- Function prototypes -- -------------- */
void distribute_nH(void);
char *getAtomID(char *atom_file);
/* --- Global variables -- -------------- */
extern Atmosphere atmos;
extern Spectrum spectrum;
extern InputData input;
extern CommandLine commandline;
extern char messageStr[];
/* ------- begin -------------------------- readAtom.c -------------- */
void readAtom(Atom *atom, bool_t active)
{
const char routineName[] = "readAtom";
register int kr, krp, kf, la, k, n;
char inputLine[MAX_LINE_SIZE], shapeStr[20], vdWstr[20], nuDepStr[20],
symmStr[20], optionStr[20], labelStr[MAX_LINE_SIZE];
char *atom_string = atom->fp_input;
bool_t Debeye, exit_on_EOF, match;
int i, j, Nlevel, Nrad, Nline, Ncont, Nfixed,
Nspace = atmos.Nspace,
Nread, Nrequired, checkPoint, L, nq, status;
double f, C, lambda0, lambdamin, vtherm, S, Ju, Jl,
c_sum, waveratio, lambda_air;
AtomicLine *line, *line1;
AtomicContinuum *continuum;
FixedTransition *fixed;
getCPU(3, TIME_START, NULL);
C = 2*PI * (Q_ELECTRON/EPSILON_0) * (Q_ELECTRON/M_ELECTRON) / CLIGHT;
/* --- Open the data file for current model atom -- -------------- */
initAtom(atom);
/*
if ((atom->fp_input = fopen(atom_file, "r")) == NULL) {
sprintf(messageStr, "Unable to open input file %s", atom_file);
Error(ERROR_LEVEL_2, routineName, atom_file);
} else {
sprintf(messageStr, " -- reading input file: %s %s",
atom_file, (active) ? "(active)\n\n" : "(passive)\n");
Error(MESSAGE, routineName, messageStr);
}
*/
atom->active = active;
/* --- Read atom ID and convert to uppercase -- -------------- */
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%2s", atom->ID);
checkNread(Nread, Nrequired=1, routineName, checkPoint=1);
for (n = 0; n < (int) strlen(atom->ID); n++)
atom->ID[n] = toupper(atom->ID[n]);
if (strlen(atom->ID) == 1) strcat(atom->ID, " ");
/* --- NOTE: atomic weight and abundance are read from the
abundance input file (abundance.input by default).
When atom is part of the background the abundance and atomic
weight are taken from the list of elements in atmos.
See: abundance.c -- -------------- */
match = FALSE;
for (n = 0; n < atmos.Nelem; n++) {
if (strstr(atmos.elements[n].ID, atom->ID)) {
if (atmos.elements[n].abundance_set) {
atom->periodic_table = n;
atom->abundance = atmos.elements[n].abund;
atom->weight = atmos.elements[n].weight;
match = TRUE;
}
break;
}
}
if (!match) {
sprintf(messageStr, " No matching element in periodic table for "
" element %s in file %s, or abundance not specified",
atom->ID, atom->atom_file);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Get Number of levels, lines fixed transitions, and continua */
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%d %d %d %d",
&atom->Nlevel, &atom->Nline, &atom->Ncont, &atom->Nfixed);
checkNread(Nread, Nrequired=4, routineName, checkPoint=2);
Nlevel = atom->Nlevel;
Nline = atom->Nline; Ncont = atom->Ncont; Nrad = Nline + Ncont;
Nfixed = atom->Nfixed;
atom->E = (double *) malloc(Nlevel * sizeof(double));
atom->g = (double *) malloc(Nlevel * sizeof(double));
atom->stage = (int *) malloc(Nlevel * sizeof(int));
atom->label = (char **) malloc(Nlevel * sizeof(char *));
/* --- Read in the level energies, statistical weights, labels,
and ionization stage -- -------------- */
for (i = 0; i < Nlevel; i++) {
atom->label[i] = (char *) calloc((ATOM_LABEL_WIDTH+1), sizeof(char));
getLineString(&atom_string, COMMENT_CHAR, inputLine , exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%lf %lf '%20c' %d",
&atom->E[i], &atom->g[i], atom->label[i], &atom->stage[i]);
checkNread(Nread, Nrequired=4, routineName, checkPoint=3);
atom->E[i] *= (HPLANCK * CLIGHT) / CM_TO_M;
}
if (atom->stage[Nlevel-1] != (atom->stage[Nlevel-2] + 1)) {
sprintf(messageStr,
"Atomic model %s in file %s does not have overlying continuum",
atom->ID, atom->atom_file);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
atom->nstar = matrix_double(Nlevel, Nspace);
atom->ntotal = (double *) malloc(Nspace * sizeof(double));
for (k = 0; k < Nspace; k++)
atom->ntotal[k] = atom->abundance * atmos.nHtot[k];
/* --- Ratio of thermal velocity and speed of light for use in
Doppler width for this particular atomic weight -- -------- */
if (atom->Nline > 0) {
atom->vbroad = (double *) malloc(Nspace * sizeof(double));
vtherm = 2.0*KBOLTZMANN/(AMU * atom->weight);
for (k = 0; k < Nspace; k++)
atom->vbroad[k] = sqrt(vtherm*atmos.T[k] + SQ(atmos.vturb[k]));
}
/* --- Check validity of input.isum for active atom -- ------------ */
if (atom->active && (input.isum < -1 || input.isum >= Nlevel)) {
sprintf(messageStr, "Invalid value for ISUM = %d, Nlevel = %d",
input.isum, Nlevel);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Go through the bound-bound transitions -- -------------- */
atom->Nprd = 0;
atom->line = (AtomicLine *) malloc(Nline * sizeof(AtomicLine));
for (kr = 0; kr < Nline; kr++) {
line = atom->line + kr;
initAtomicLine(line);
line->atom = atom;
line->isotope_frac = 1.0;
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine,
"%d %d %lf %s %d %s %lf %lf %s %lf %lf %lf %lf %lf %lf %lf",
&j, &i, &f, shapeStr, &line->Nlambda, symmStr,
&line->qcore, &line->qwing, vdWstr,
&line->cvdWaals[0], &line->cvdWaals[1],
&line->cvdWaals[2], &line->cvdWaals[3],
&line->Grad, &line->cStark, &line->g_Lande_eff);
checkNread(Nread, Nrequired=15, routineName, checkPoint=4);
if (Nread == 15) line->g_Lande_eff = 0.0;
line->j = MAX(i, j); line->i = MIN(i, j);
i = line->i;
j = line->j;
lambda0 = (HPLANCK * CLIGHT) / (atom->E[j] - atom->E[i]);
line->Aji = C / SQ(lambda0) * (atom->g[i] / atom->g[j]) * f;
line->Bji = CUBE(lambda0) / (2.0 * HPLANCK * CLIGHT) * line->Aji;
line->Bij = (atom->g[j] / atom->g[i]) * line->Bji;
line->lambda0 = lambda0 / NM_TO_M;
/* --- Parse the shape string -- -------------- */
if (!strstr(shapeStr, "PRD") &&
!strstr(shapeStr, "VOIGT") &&
!strstr(shapeStr, "GAUSS") &&
!strstr(shapeStr, "COMPOSIT")) {
sprintf(messageStr, "Invalid value for line-shape string: %s",
shapeStr);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
if (strstr(shapeStr, "PRD") && input.PRD_NmaxIter > 0) {
atom->Nprd++;
line->PRD = TRUE;
if (input.limit_memory && atom->active) {
sprintf(messageStr,
"Cannot limit memory with PRD lines present in active atom");
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
if (strstr(shapeStr, "GAUSS")) line->Voigt = FALSE;
if (strstr(shapeStr, "COMPOSIT")) {
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%d", &line->Ncomponent);
line->c_shift = (double *) malloc(line->Ncomponent * sizeof(double));
line->c_fraction =
(double *) malloc(line->Ncomponent * sizeof(double));
c_sum = 0.0;
for (n = 0; n < line->Ncomponent; n++) {
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%lf %lf",
&line->c_shift[n], &line->c_fraction[n]);
c_sum += line->c_fraction[n];
}
if (c_sum > (1.0 + MAX_ABUND_ERROR) ||
c_sum < (1.0 - MAX_ABUND_ERROR)) {
vacuum_to_air(1, &line->lambda0, &lambda_air);
sprintf(messageStr,
"Line %d -> %d (%9.3f [nm]): \n"
" Component fractions do not add up to unity: %f",
line->j, line->i, lambda_air, c_sum);
Error(ERROR_LEVEL_2, routineName, messageStr);
} else {
vacuum_to_air(1, &line->lambda0, &lambda_air);
sprintf(messageStr,
" Line %d -> %d (%9.3f [nm]) has %d components\n",
line->j, line->i, lambda_air, line->Ncomponent);
Error(MESSAGE, routineName, messageStr);
}
} else {
line->Ncomponent = 1;
line->c_shift = (double *) malloc(sizeof(double));
line->c_shift[0] = 0.0;
line->c_fraction = (double *) malloc(sizeof(double));
line->c_fraction[0] = 1.0;
}
if (strstr(vdWstr, "PARAMTR"))
line->vdWaals = RIDDER_RENSBERGEN;
else if (strstr(vdWstr, "UNSOLD")) {
line->vdWaals = UNSOLD;
line->cvdWaals[3] = line->cvdWaals[1] = 0.0;
} else if (strstr(vdWstr, "BARKLEM")) {
line->vdWaals = BARKLEM;
if (!getBarklemactivecross(line)) {
sprintf(messageStr,
"Line %3d -> %3d: cannot treat line "
"with Barklem type broadening. Using UNSOLD.", j, i);
Error(WARNING, routineName, messageStr);
line->vdWaals = UNSOLD;
line->cvdWaals[3] = line->cvdWaals[1] = 0.0;
}
} else {
sprintf(messageStr, "Invalid value for vd Waals string: %s", vdWstr);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
line->symmetric = (strstr(symmStr, "ASYMM")) ? FALSE : TRUE;
line->polarizable = FALSE;
if (atom->active) {
/* --- Allocate space for up- and downward radiative rates -- - */
line->Rij = (double *) malloc(Nspace * sizeof(double));
line->Rji = (double *) malloc(Nspace * sizeof(double));
/* --- Initialize the mutex lock for the radiative rates if there
is more than one thread -- -------------- */
if (input.Nthreads > 1) {
if ((status = pthread_mutex_init(&line->rate_lock, NULL))) {
sprintf(messageStr, "Unable to initialize mutex_lock, status = %d",
status);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
if (atmos.Stokes) {
if (line->g_Lande_eff != 0.0 ||
(determinate(atom->label[i], atom->g[i], &nq, &S, &L, &Jl) &&
determinate(atom->label[j], atom->g[j], &nq, &S, &L, &Ju) &&
fabs(Ju - Jl) <= 1.0)) {
if (line->Ncomponent > 1) {
sprintf(messageStr,
"Line %3d -> %3d: cannot treat composite line "
"with polarization", j, i);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
line->polarizable = TRUE;
} else {
sprintf(messageStr,
" -- Treating line %3d -> %3d without polarization%s\n",
j, i, (kr == Nline-1) ? "\n" : "");
Error(MESSAGE, routineName, messageStr);
line->polarizable = FALSE;
}
}
}
}
/* --- Go through the bound-free transitions -- -------------- */
atom->continuum =
(AtomicContinuum *) malloc(Ncont * sizeof(AtomicContinuum));
for (kr = 0; kr < Ncont; kr++) {
continuum = atom->continuum + kr;
initAtomicContinuum(continuum);
continuum->atom = atom;
continuum->isotope_frac = 1.0;
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%d %d %lf %d %s %lf",
&j, &i, &continuum->alpha0, &continuum->Nlambda,
nuDepStr, &lambdamin);
checkNread(Nread, Nrequired=6, routineName, checkPoint=5);
continuum->j = MAX(i, j); continuum->i = MIN(i, j);
j = continuum->j;
i = continuum->i;
lambda0 = (HPLANCK * CLIGHT)/(atom->E[j] - atom->E[i]);
continuum->lambda0 = lambda0 / NM_TO_M;
continuum->lambda =
(double *) malloc(continuum->Nlambda * sizeof(double));
continuum->alpha =
(double *) malloc(continuum->Nlambda * sizeof(double));
if (strstr(nuDepStr, "EXPLICIT")) {
continuum->hydrogenic = FALSE;
for (la = continuum->Nlambda-1; la >= 0; la--) {
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%lf %lf",
&continuum->lambda[la], &continuum->alpha[la]);
checkNread(Nread, Nrequired=2, routineName, checkPoint=6);
}
for (la = 1; la < continuum->Nlambda; la++) {
if (continuum->lambda[la] < continuum->lambda[la-1]) {
sprintf(messageStr, "Wavelength for continuum %d - %d"
" is not monotonous", i, j);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
} else if (strstr(nuDepStr, "HYDROGENIC")) {
continuum->hydrogenic = TRUE;
if (lambdamin >= continuum->lambda0) {
sprintf(messageStr, "Minimum wavelength for continuum %d -> %d"
" is larger than continuum edge at: %f [nm]",
j, i, lambdamin);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
getLambdaCont(continuum, lambdamin);
} else {
sprintf(messageStr,
"Invalid value for wavelength dependence string: %s",
nuDepStr);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
if (atom->active) {
/* --- Allocate space for up- and downward radiative rates -- - */
continuum->Rij = (double *) malloc(Nspace * sizeof(double));
continuum->Rji = (double *) malloc(Nspace * sizeof(double));
/* --- Initialize the mutex lock for the radiative rates if there
is more than one thread -- -------------- */
if (input.Nthreads > 1) {
if ((status = pthread_mutex_init(&continuum->rate_lock, NULL))) {
sprintf(messageStr, "Unable to initialize mutex_lock, status = %d",
status);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
}
}
/* --- Go through fixed transitions -- -------------- */
if (atom->Nfixed > 0) {
atom->ft = (FixedTransition *) malloc(Nfixed * sizeof(FixedTransition));
for (kf = 0; kf < Nfixed; kf++) {
fixed = atom->ft + kf;
fixed->atom = atom;
getLineString(&atom_string, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%d %d %lf %lf %s",
&j, &i, &fixed->strength,
&fixed->Trad, optionStr);
checkNread(Nread, Nrequired=5, routineName, checkPoint=6);
fixed->j = MAX(i, j); fixed->i = MIN(i, j);
j = fixed->j;
i = fixed->i;
for (kr = 0; kr < Nline; kr++) {
line = atom->line + kr;
if (line->i == i && line->j == j) {
sprintf(messageStr,
"Fixed transition j = %d, i = %d duplicates active line",
j, i);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
for (kr = 0; kr < Ncont; kr++) {
continuum = atom->continuum + kr;
if (continuum->i == i && continuum->j == j) {
sprintf(messageStr, "Fixed transition j = %d, i = %d"
" duplicates active continuum", j, i);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
lambda0 = (HPLANCK * CLIGHT) / (atom->E[j] - atom->E[i]);
fixed->lambda0 = lambda0 / NM_TO_M;
if (atom->stage[j] == atom->stage[i])
fixed->type = FIXED_LINE;
else
fixed->type = FIXED_CONTINUUM;
if (strstr(optionStr, "TRAD_ATMOSPHERIC"))
fixed->option = TRAD_ATMOSPHERIC;
else if (strstr(optionStr, "TRAD_PHOTOSPHERIC"))
fixed->option = TRAD_PHOTOSPHERIC;
else if (strstr(optionStr, "TRAD_CHROMOSPHERIC"))
fixed->option = TRAD_CHROMOSPHERIC;
else {
sprintf(messageStr, "Invalid value for radiation temperature"
" option string: %s", optionStr);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
}
if (atom->active) {
atom->popsoutFile = (char *) malloc(12 * sizeof(char));
sprintf(atom->popsoutFile, (atom->ID[1] == ' ') ?
"pops.%.1s.out" : "pops.%.2s.out", atom->ID);
if (atom->Nprd > 0) {
if (atmos.moving && !input.PRD_angle_dep) {
sprintf(messageStr,
"Using angle-averaged PRD in moving atmosphere for "
"atom %2s\n", atom->ID);
Error(WARNING, routineName, messageStr);
}
if (!atmos.moving && input.PRD_angle_dep) {
sprintf(messageStr,
"Using angle-dependent PRD in static atmosphere for "
"atom %2s\n", atom->ID);
Error(WARNING, routineName, messageStr);
}
/* --- Create the array to store cross redistribution lines - - */
if (input.XRD) {
for (kr = 0; kr < Nline; kr++) {
line = &atom->line[kr];
line->xrd = (AtomicLine **) malloc(Nline * sizeof(AtomicLine *));
if (line->PRD) {
for (krp = 0; krp < Nline; krp++) {
if (atom->line[krp].PRD &&
line->j == atom->line[krp].j &&
line->i != atom->line[krp].i) {
line->xrd[line->Nxrd] = &atom->line[krp];
line->Nxrd++;
/* --- Make sure wavelength quadratures match in
case of cross-redistribution -- -------------- */
if (krp > kr) {
waveratio = atom->line[krp].lambda0 / line->lambda0;
atom->line[krp].qwing = waveratio * line->qwing;
}
}
}
line->xrd =
realloc (line->xrd, line->Nxrd * sizeof(AtomicLine *));
sprintf(messageStr,
"Found %d subordinate PRD lines for line %d-%d of "
"atom %2s\n", line->Nxrd, line->j, line->i, atom->ID);
Error(MESSAGE, routineName, messageStr);
}
}
}
}
/* --- Get wavelength quadratures and allocate space
for populations -- -------------- */
for (kr = 0; kr < Nline; kr++) getLambda(atom->line + kr);
atom->n = matrix_double(Nlevel, Nspace);
/* --- Allocate space for thread dependent quantities -- -------- */
atom->rhth = (rhthread *) malloc(input.Nthreads * sizeof(rhthread));
/* --- Store the offset to allow pointing back to the start of the
collisional data in the atomic input file, and allocate
space for rate coefficients -- ------------- */
atom->offset_coll = atom_string;
atom->C = matrix_double(SQ(Nlevel), Nspace);
} else {
if (atom->popsinFile &&
atom->initial_solution == OLD_POPULATIONS) {
atom->NLTEpops = TRUE;
/* --- Allocate memory for Non-LTE populations -- ------------- */
atom->n = matrix_double(atom->Nlevel, atmos.Nspace);
readPopulations(atom);
sprintf(messageStr,
" --- Read input file: %s with NLTE populations for atom %s\n",
atom->popsinFile, atom->ID);
Error(MESSAGE, routineName, messageStr);
} else {
atom->NLTEpops = FALSE;
/* --- Save some memory by aliasing n to nstar if passive -- -- */
atom->n = atom->nstar;
}
/* --- For the inactive atom we can close the input file here. For
the active atoms we need to read the collisional data after
the LTE populations have been calculated (after the electron
density has been calculated if necessary). This is done
in routine SetLTEQuantities in ltepops.c -- -------------- */
}
sprintf(labelStr, "Read %s %2s",
(atom->active) ? "Active" : "Atom", atom->ID);
getCPU(3, TIME_POLL, labelStr);
}
/* ------- end ---------------------------- readAtom.c -------------- */
/* ------- begin -------------------------- initAtom.c -------------- */
void initAtom(Atom *atom)
{
/* --- Initialize atomic data structure. Set pointers to NULL -- -- */
atom->label = NULL;
atom->popsinFile = NULL;
atom->popsoutFile = NULL;
atom->initial_solution = UNKNOWN;
atom->active = FALSE;
atom->NLTEpops = FALSE;
atom->Nfixed = atom->Ncont = atom->Nline = atom->Nlevel = 0;
atom->Nprd = 0;
atom->stage = NULL;
atom->periodic_table = 0;
atom->abundance = atom->weight = 0.0;
atom->g = atom->E = atom->vbroad = NULL;
atom->C = NULL;
atom->n = atom->nstar = NULL;
atom->ntotal = NULL;
atom->Gamma = NULL;
atom->line = NULL;
atom->continuum = NULL;
atom->ft = NULL;
atom->Ng_n = NULL;
}
/* ------- end ---------------------------- initAtom.c -------------- */
/* ------- begin -------------------------- initAtomicLine.c -------- */
void initAtomicLine(AtomicLine *line)
{
register int n;
/* --- Initialize transition data structure. Set pointers to NULL - */
line->symmetric = TRUE;
line->polarizable = FALSE;
line->Voigt = TRUE;
line->PRD = FALSE;
line->vdWaals = UNSOLD;
line->i = line->j = line->Nlambda = line->Nblue = 0;
line->Ncomponent = 1;
line->Nxrd = 0;
line->lambda0 = line->isotope_frac = line->g_Lande_eff = 0.0;
line->lambda = NULL;
line->Aji = line->Bji = line->Bij = 0.0;
line->Rij = line->Rji = NULL;
line->phi = line->phi_Q = line->phi_U = line->phi_V = NULL;
line->psi_Q = line->psi_U = line->psi_V = NULL;
line->wphi = line->Qelast = NULL;
line->Grad = line->cStark = 0.0;
for (n = 0; n < 4; n++) line->cvdWaals[n] = 0.0;
line->qwing = line->qcore = 0.0;
line->c_shift = line->c_fraction = NULL;
line->rho_prd = NULL;
line->fp_GII = NULL;
line->Ng_prd = NULL;
line->atom = NULL;
line->xrd = NULL;
line->frac = NULL;
line->id0 = NULL;
line->id1 = NULL;
line->gII = NULL;
}
/* ------- end ---------------------------- initAtomicLine.c -------- */
/* ------- begin -------------------------- initAtomicContinuum.c --- */
void initAtomicContinuum(AtomicContinuum *continuum)
{
/* --- Initialize transition data structure. Set pointers to NULL - */
continuum->hydrogenic = TRUE;
continuum->i = continuum->j = 0;
continuum->Nlambda = continuum->Nblue = 0;
continuum->lambda0 = continuum->isotope_frac = 0.0;
continuum->lambda = NULL;
continuum->alpha0 = 0.0;
continuum->alpha = continuum->Rij = continuum->Rji = NULL;
continuum->atom = NULL;
}
/* ------- end ---------------------------- initAtomicContinuum.c --- */
/* ------- begin -------------------------- freeAtom.c -------------- */
void freeAtom(Atom *atom)
{
register int kr;
/* --- Free allocated memory for atomic data structure -- --------- */
if (atom->label != NULL) freeMatrix((void **) atom->label);
if (atom->popsinFile != NULL) free(atom->popsinFile);
if (atom->popsoutFile != NULL) free(atom->popsoutFile);
if (atom->stage != NULL) free(atom->stage);
if (atom->g != NULL) free(atom->g);
if (atom->E != NULL) free(atom->E);
if (atom->C != NULL) freeMatrix((void **) atom->C);
if (atom->vbroad != NULL) free(atom->vbroad);
/* --- Be careful here because atom->n points to atom->nstar in
the case of LTE populations (see readAtom.c) -- ------------ */
if (atom->n != atom->nstar)
if (atom->n != NULL) freeMatrix((void **) atom->n);
if (atom->nstar != NULL) freeMatrix((void **) atom->nstar);
if (atom->ntotal != NULL) free(atom->ntotal);
if (atom->Gamma != NULL) freeMatrix((void **) atom->Gamma);
if (atom->line != NULL) {
for (kr = 0; kr < atom->Nline; kr++)
freeAtomicLine(atom->line + kr);
free(atom->line);
}
if (atom->continuum != NULL) {
for (kr = 0; kr < atom->Ncont; kr++)
freeAtomicContinuum(atom->continuum + kr);
free(atom->continuum);
}
if (atom->ft != NULL) free(atom->ft);
}
/* ------- end ---------------------------- freeAtom.c -------------- */
/* ------- begin -------------------------- freeAtomicLine.c -------- */
void freeAtomicLine(AtomicLine *line)
{
/* --- Free allocated memory for active transition structure line - */
if (line->lambda != NULL) free(line->lambda);
if (line->Rij != NULL) free(line->Rij);
if (line->Rji != NULL) free(line->Rji);
if (line->phi != NULL) freeMatrix((void **) line->phi);
if (line->polarizable) {
if (line->phi_Q != NULL) freeMatrix((void **) line->phi_Q);
if (line->phi_U != NULL) freeMatrix((void **) line->phi_U);
if (line->phi_V != NULL) freeMatrix((void **) line->phi_V);
if (line->psi_Q != NULL) freeMatrix((void **) line->psi_Q);
if (line->psi_U != NULL) freeMatrix((void **) line->psi_U);
if (line->psi_V != NULL) freeMatrix((void **) line->psi_V);
}
if (line->c_shift != NULL) free(line->c_shift);
if (line->c_fraction != NULL) free(line->c_fraction);
if (line->wphi != NULL) free(line->wphi);
if (line->Qelast != NULL) free(line->Qelast);
if (line->rho_prd != NULL) freeMatrix((void **) line->rho_prd);
if (line->fp_GII != NULL) free(line->fp_GII);
}
/* ------- end ---------------------------- freeAtomicLine.c -------- */
/* ------- begin -------------------------- freeAtomicContinuum.c --- */
void freeAtomicContinuum(AtomicContinuum *continuum)
{
/* --- Free allocated memory for AtomicContinuum structure -- ----- */
if (continuum->lambda != NULL) free(continuum->lambda);
if (continuum->Rij != NULL) free(continuum->Rij);
if (continuum->Rji != NULL) free(continuum->Rji);
if (continuum->alpha != NULL) free(continuum->alpha);
}
/* ------- end ---------------------------- freeAtomicContinuum.c --- */
/* ------- begin -------------------------- readAtomicModels.c ------ */
void readAtomicModels(void)
{
const char routineName[] = "readAtomicModels";
register int n, m, i;
char filename[MAX_LINE_SIZE],
actionKey[MAX_KEYWORD_SIZE], popsKey[MAX_KEYWORD_SIZE],
popsFile[MAX_LINE_SIZE], inputLine[MAX_LINE_SIZE], *atomID;
bool_t active, exit_on_EOF;
int Nread, Nrequired, checkPoint;
char *fp_atoms;
Atom *atom;
Element *element;
getCPU(2, TIME_START, NULL);
/* --- Open input file for atomic models -- -------------- */
if (input.atoms_file_contents == NULL)
input.atoms_file_contents = readWholeFile(input.atoms_input);
fp_atoms = input.atoms_file_contents;
/* --- Get the number of atomic models to be read -- -------------- */
getLineString(&fp_atoms, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%d", &atmos.Natom);
checkNread(Nread, Nrequired=1, routineName, checkPoint=1);
atmos.atoms = (Atom *) malloc(atmos.Natom * sizeof(Atom));
/* --- Read atomic data for the various model atoms -- ------------ */
for (n = 0; n < atmos.Natom; n++) {
getLineString(&fp_atoms, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
Nread = sscanf(inputLine, "%s %s %s %s ",
filename, actionKey, popsKey, popsFile);
checkNread(Nread, Nrequired=3, routineName, checkPoint=2);
atomID = getAtomID(filename);
if (n == 0 && !strstr(atomID, "H ")) {
sprintf(messageStr, "First atomic model is not hydrogen: %s",
atomID);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Check for duplicate atomic ID -- -------------- */
for (m = 0; m < n; m++) {
if (strstr(atomID, atmos.atoms[m].ID)) {
sprintf(messageStr,
"Already read atomic model for element %s\n", atomID);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
}
/* --- Set active flag. Active set to TRUE means atom will be
treated in Non-LTE -- -------------- */
atom = &atmos.atoms[n];
/* Either use saved files (rerun only) or read whole file as string */
if (input.atomic_file_contents != NULL) {
atom->fp_input = input.atomic_file_contents[n];
} else {
atom->fp_input = readWholeFile(filename);
}
strncpy(atom->atom_file, filename, sizeof(atom->atom_file));
atom->atom_file[sizeof(atom->atom_file) - 1] = '\0'; /* terminate string */
readAtom(atom, active=(strstr(actionKey, "ACTIVE") ? TRUE : FALSE));
/* --- Set flag for initial soltion -- -------------- */
if (strstr(popsKey, "OLD_POPULATIONS")) {
atom->initial_solution = OLD_POPULATIONS;
} else if (strstr(popsKey, "LTE_POPULATIONS")) {
atom->initial_solution = LTE_POPULATIONS;
} else if (strstr(popsKey, "ZERO_RADIATION")) {
atom->initial_solution = ZERO_RADIATION;
} else if (strstr(popsKey, "ESCAPE_PROBABILITY")) {
atom->initial_solution = ESCAPE_PROBABILITY;
}
/* --- If popsKey is not recognized -- -------------- */
if (atom->initial_solution == UNKNOWN) {
sprintf(messageStr,
"Unknown initial solution specified for atom: %s\n",
atomID);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- If input.startJ == OLD_J then enforce OLD_POPULATIONAS - - */
if (atom->active && input.startJ == OLD_J)
atom->initial_solution = OLD_POPULATIONS;
/* --- Copy filename for old population numbers -- -------------- */
if (atom->initial_solution == OLD_POPULATIONS) {
if (Nread < 4) {
sprintf(messageStr,
"No file with OLD_POPULATIONS specified for atom: %s\n",
atomID);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
atom->popsinFile =
(char *) malloc((strlen(popsFile) + 1) * sizeof(char));
strcpy(atom->popsinFile, popsFile);
}
}
/* --- Create an alias to the hydrogen atom structure -- ---------- */
atmos.H = &atmos.atoms[0];
/* --- Store pointers to models in element structures -- ---------- */
for (n = 0; n < atmos.Natom; n++)
atmos.elements[atmos.atoms[n].periodic_table].model = &atmos.atoms[n];
/* --- Redistribute the hydrogen populations read in with the
atmosphere over the atmospheric Hydrogen model -- ---------- */
distribute_nH();
getCPU(2, TIME_POLL, "Read atomic input");
}
/* ------- end ---------------------------- readAtomicModels.c ------ */
/* ------- begin -------------------------- getAtomID.c ------------- */
char *getAtomID(char *atom_file)
{
const char routineName[] = "getAtomID";
register int n;
static char atomID[ATOM_ID_WIDTH + 1];
char inputLine[MAX_LINE_SIZE];
bool_t exit_on_EOF;
FILE *fp_atom;
if ((fp_atom = fopen(atom_file, "r")) == NULL) {
sprintf(messageStr, "Unable to open inputfile %s", atom_file);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Read atom ID and convert to uppercase -- -------------- */
getLine(fp_atom, COMMENT_CHAR, inputLine, exit_on_EOF=TRUE);
sscanf(inputLine, "%2s", atomID);
for (n = 0; n < (int) strlen(atomID); n++)
atomID[n] = toupper(atomID[n]);
if (strlen(atomID) == 1) strcat(atomID, " ");
fclose(fp_atom);
return atomID;
}
/* ------- end ---------------------------- getAtomID.c ------------- */