Skip to content

Latest commit

 

History

History
350 lines (302 loc) · 22.3 KB

README.md

File metadata and controls

350 lines (302 loc) · 22.3 KB

hrqolr

R-CMD-check codecov

Package for simulating randomised clinical trials with temporal trajectories of health-related quality of life (HRQoL) as the outcome, to quantify effect sizes as single-sampled HRQoL values at end of follow-up and as the area under the trajectories.

Developed as part of the INCEPT (Intensive Care Platform Trial) project (https://incept.dk/), which is primarily supported by a grant from Sygeforsikringen “danmark” (https://www.sygeforsikring.dk/).

Resources

Getting started

First, load the package:

library(hrqolr)
#> Loading 'hrqolr' package v0.0.0.9051.
#> For help, run 'help("hrqolr")' or check out https://inceptdk.github.io/hrqolr.

The preferred way to design a scenario is by using the setup_scenario() function to validate the input and give it the right format. Set verbose = FALSE to silence the validation results.

scenario <- setup_scenario(
    arms = c("A", "B"),
    n_patients = 100,
    sampling_frequency = 14,
    index_hrqol = 0.0,
    first_hrqol = 0.1,
    final_hrqol = c(A = 0.8, B = 0.7),
    acceleration_hrqol = c(A = 1.1, B = 1.0),
    
    mortality = 0.4,
    mortality_dampening = 0.0,
    mortality_trajectory_shape = "exp_decay",
    prop_mortality_benefitters = 0.0
)
#> Scenario-parameter validation:
#> - arms                         valid as is   c("A", "B")   
#> - n_patients                   expanded to   c(A = 100, B = 100)   
#> - index_hrqol                  expanded to   c(A = 0, B = 0)   
#> - first_hrqol                  expanded to   c(A = 0.1, B = 0.1)   
#> - final_hrqol                  valid as is   c(A = 0.8, B = 0.7)   
#> - acceleration_hrqol           valid as is   c(A = 1.1, B = 1)   
#> - mortality                    expanded to   c(A = 0.4, B = 0.4)   
#> - mortality_dampening          expanded to   c(A = 0, B = 0)   
#> - mortality_trajectory_shape   expanded to   c(A = "exp_decay", B = "exp_decay")   
#> - prop_mortality_benefitters   expanded to   c(A = 0, B = 0)   
#> - sampling_frequency           expanded to   c(A = 14, B = 14)

Getting an overview of the final scenario:

scenario
#> - arms                                    A           B
#> - n_patients                            100         100
#> - index_hrqol                             0           0
#> - first_hrqol                           0.1         0.1
#> - final_hrqol                           0.8         0.7
#> - acceleration_hrqol                    1.1           1
#> - mortality                             0.4         0.4
#> - mortality_dampening                     0           0
#> - mortality_trajectory_shape      exp_decay   exp_decay
#> - prop_mortality_benefitters              0           0
#> - sampling_frequency                     14          14

With the scenario at hand, we can sample a number of example trajectories and visualise them:

example_trajs <- sample_example_trajectories(scenario, n_digits = 3)
plot(example_trajs)

sample_example_trajectories returns a ggplot object, allowing you to fine-tune its appearance for your needs. For example, breaking apart the trajectories in the arms apart with facets and hide the legend (remember to load ggplot2 first). Here, we also set the arm-level trajectory in black to make it stand out better:

library(ggplot2) 

plot(example_trajs, arm_aes = list(colour = "black")) +
    facet_wrap(~ arm) +
    theme(legend.position = "none")

You can also summarise the trajectories, e.g., with inter-quartile ranges. The ribbons become a bit wonky at end of follow-up due to increasingly fewer observations some of which might be low:

plot(example_trajs, "summarise", ribbon_percentiles = c(0.25, 0.75))

The same scenario specification can, then, be used to simulate a desired number of trials. By default hrqolr will print progress updates to the console (silence these with verbose = FALSE):

sims <- simulate_trials(scenario)
#> 2024-06-02 17:28:51: Estimating ground truth of arm 'A' (0 secs)
#> 2024-06-02 17:28:51: Starting arm 'A' (0.4 secs)
#> 2024-06-02 17:28:52: Estimating ground truth of arm 'B' (1.39 secs)
#> 2024-06-02 17:28:53: Starting arm 'B' (1.74 secs)
#> 2024-06-02 17:28:54: Aggregating results (2.78 secs)
#> 2024-06-02 17:28:54: Finished (2.99 secs)
#> 2024-06-02 17:28:54: Sampling example trajectories (3.13 secs)
#> 2024-06-02 17:28:54: Wrapping up, returning output (3.36 secs)

Just printing the returned object gives an overview:

sims
#> # Scenario specification
#> - arms                                    A           B
#> - n_patients                            100         100
#> - index_hrqol                             0           0
#> - first_hrqol                           0.1         0.1
#> - final_hrqol                           0.8         0.7
#> - acceleration_hrqol                    1.1           1
#> - mortality                             0.4         0.4
#> - mortality_dampening                     0           0
#> - mortality_trajectory_shape      exp_decay   exp_decay
#> - prop_mortality_benefitters              0           0
#> - sampling_frequency                     14          14
#> 
#> # Simulation metadata
#> - No. simulated trials          100   
#> - Max. no. patients per batch   NULL   
#> - No. ground-truth samples      1,000   
#> - Valid range of HRQoL          [-0.757,  1.000]   
#> - Significance level (alpha)    0.05   
#> - Test function                 welch_t_test   
#> - Seed                          NULL   
#> - Elapsed time                  3.4 secs   
#> - Peak memory use               195 MB   
#> 
#> # Comparisons between arms (all patients) and select performance metrics
#>                           primary__hrqol_at_eof primary__hrqol_auc
#>                    <char>                <char>             <char>
#>            Comparator arm                     A                  A
#>                Target arm                     B                  B
#>           Mean difference                -0.055             -7.571
#>  Std. error of mean diff.                 0.005              0.736
#>             Relative bias                -0.046             -0.008
#>      Rejection proportion                  0.17               0.15
#>                  Coverage                  0.94               0.95
#> 
#> # Summary statistics
#> ## All participants
#>                   outcome    arm    p25    p50    p75   mean    sd    se
#>                    <char> <char>  <num>  <num>  <num>  <num> <num> <num>
#>     primary__hrqol_at_eof      A  0.448  0.474  0.504  0.476 0.040 0.004
#>     primary__hrqol_at_eof      B  0.398  0.423  0.443  0.421 0.033 0.003
#>        primary__hrqol_auc      A 64.367 68.122 71.961 68.295 5.707 0.571
#>        primary__hrqol_auc      B 57.468 60.828 64.142 60.724 4.714 0.471
#>  secondary1__hrqol_at_eof      A  0.448  0.474  0.504  0.477 0.039 0.004
#>  secondary1__hrqol_at_eof      B  0.398  0.423  0.443  0.421 0.033 0.003
#>     secondary1__hrqol_auc      A 64.107 68.048 71.888 68.155 5.691 0.569
#>     secondary1__hrqol_auc      B 57.195 60.691 63.891 60.498 4.729 0.473
#>  secondary2__hrqol_at_eof      A  0.448  0.474  0.504  0.477 0.039 0.004
#>  secondary2__hrqol_at_eof      B  0.398  0.423  0.443  0.421 0.033 0.003
#>     secondary2__hrqol_auc      A 60.384 63.871 67.890 64.166 5.341 0.534
#>     secondary2__hrqol_auc      B 53.484 56.953 59.913 56.763 4.430 0.443
#> 
#> ## Survivors
#>                   outcome    arm    p25     p50     p75    mean    sd    se
#>                    <char> <char>  <num>   <num>   <num>   <num> <num> <num>
#>     primary__hrqol_at_eof      A  0.558   0.580   0.612   0.582 0.040 0.004
#>     primary__hrqol_at_eof      B  0.484   0.509   0.524   0.508 0.032 0.003
#>        primary__hrqol_auc      A 80.209  82.936  87.832  83.460 5.879 0.588
#>        primary__hrqol_auc      B 69.555  73.145  75.850  73.248 4.593 0.459
#>  secondary1__hrqol_at_eof      A  0.650   0.674   0.697   0.674 0.036 0.004
#>  secondary1__hrqol_at_eof      B  0.572   0.588   0.606   0.589 0.028 0.003
#>     secondary1__hrqol_auc      A 93.299  96.414  99.438  96.473 5.342 0.534
#>     secondary1__hrqol_auc      B 81.354  84.834  87.068  84.608 4.027 0.403
#>  secondary2__hrqol_at_eof      A  0.741   0.760   0.777   0.758 0.024 0.002
#>  secondary2__hrqol_at_eof      B  0.652   0.664   0.677   0.663 0.020 0.002
#>     secondary2__hrqol_auc      A 99.867 102.464 104.385 102.021 3.320 0.332
#>     secondary2__hrqol_auc      B 87.787  89.541  91.370  89.385 2.817 0.282

The returned object contains quite a lot of interesting information. For example, summary statistics by arm:

sims$summary_stats
#>                      outcome    arm  analysis    p25     p50     p75    mean    sd    se
#>                       <char> <char>    <fctr>  <num>   <num>   <num>   <num> <num> <num>
#>  1:    primary__hrqol_at_eof      A       all  0.448   0.474   0.504   0.476 0.040 0.004
#>  2:    primary__hrqol_at_eof      B       all  0.398   0.423   0.443   0.421 0.033 0.003
#>  3:       primary__hrqol_auc      A       all 64.367  68.122  71.961  68.295 5.707 0.571
#>  4:       primary__hrqol_auc      B       all 57.468  60.828  64.142  60.724 4.714 0.471
#>  5: secondary1__hrqol_at_eof      A       all  0.448   0.474   0.504   0.477 0.039 0.004
#>  6: secondary1__hrqol_at_eof      B       all  0.398   0.423   0.443   0.421 0.033 0.003
#>  7:    secondary1__hrqol_auc      A       all 64.107  68.048  71.888  68.155 5.691 0.569
#>  8:    secondary1__hrqol_auc      B       all 57.195  60.691  63.891  60.498 4.729 0.473
#>  9: secondary2__hrqol_at_eof      A       all  0.448   0.474   0.504   0.477 0.039 0.004
#> 10: secondary2__hrqol_at_eof      B       all  0.398   0.423   0.443   0.421 0.033 0.003
#> 11:    secondary2__hrqol_auc      A       all 60.384  63.871  67.890  64.166 5.341 0.534
#> 12:    secondary2__hrqol_auc      B       all 53.484  56.953  59.913  56.763 4.430 0.443
#> 13:    primary__hrqol_at_eof      A survivors  0.558   0.580   0.612   0.582 0.040 0.004
#> 14:    primary__hrqol_at_eof      B survivors  0.484   0.509   0.524   0.508 0.032 0.003
#> 15:       primary__hrqol_auc      A survivors 80.209  82.936  87.832  83.460 5.879 0.588
#> 16:       primary__hrqol_auc      B survivors 69.555  73.145  75.850  73.248 4.593 0.459
#> 17: secondary1__hrqol_at_eof      A survivors  0.650   0.674   0.697   0.674 0.036 0.004
#> 18: secondary1__hrqol_at_eof      B survivors  0.572   0.588   0.606   0.589 0.028 0.003
#> 19:    secondary1__hrqol_auc      A survivors 93.299  96.414  99.438  96.473 5.342 0.534
#> 20:    secondary1__hrqol_auc      B survivors 81.354  84.834  87.068  84.608 4.027 0.403
#> 21: secondary2__hrqol_at_eof      A survivors  0.741   0.760   0.777   0.758 0.024 0.002
#> 22: secondary2__hrqol_at_eof      B survivors  0.652   0.664   0.677   0.663 0.020 0.002
#> 23:    secondary2__hrqol_auc      A survivors 99.867 102.464 104.385 102.021 3.320 0.332
#> 24:    secondary2__hrqol_auc      B survivors 87.787  89.541  91.370  89.385 2.817 0.282
#>                      outcome    arm  analysis    p25     p50     p75    mean    sd    se

–and head-to-head comparisons between the arms:

sims$comparisons
#>                      statistic primary__hrqol_at_eof primary__hrqol_at_eof primary__hrqol_auc primary__hrqol_auc secondary1__hrqol_at_eof secondary1__hrqol_at_eof secondary1__hrqol_auc secondary1__hrqol_auc secondary2__hrqol_at_eof secondary2__hrqol_at_eof secondary2__hrqol_auc secondary2__hrqol_auc
#>                         <char>                <char>                <char>             <char>             <char>                   <char>                   <char>                <char>                <char>                   <char>                   <char>                <char>                <char>
#>  1:                 comparator                     A                     A                  A                  A                        A                        A                     A                     A                        A                        A                     A                     A
#>  2:                     target                     B                     B                  B                  B                        B                        B                     B                     B                        B                        B                     B                     B
#>  3:                   analysis                   all             survivors                all          survivors                      all                survivors                   all             survivors                      all                survivors                   all             survivors
#>  4:              mean_estimate                -0.055                -0.074             -7.571            -10.212                   -0.056                   -0.086                -7.657               -11.866                   -0.056                   -0.095                -7.403               -12.636
#>  5:          mean_ground_truth                -0.058                -0.058             -7.633             -7.633                   -0.058                   -0.058                -7.795                -7.795                   -0.058                   -0.058                -7.801                -7.801
#>  6:                         sd                 0.051                 0.053              7.357              7.617                    0.051                    0.043                 7.366                 6.345                    0.051                    0.032                 6.897                 4.346
#>  7:                         se                 0.005                 0.005              0.736              0.762                    0.005                    0.004                 0.737                 0.635                    0.005                    0.003                  0.69                 0.435
#>  8:                       bias                 0.003                -0.016              0.062             -2.579                    0.003                   -0.028                 0.138                -4.071                    0.003                   -0.037                 0.398                -4.835
#>  9:                    bias_se                 0.005                 0.005              0.736              0.762                    0.005                    0.004                 0.737                 0.635                    0.005                    0.003                  0.69                 0.435
#> 10:              relative_bias                -0.046                 0.279             -0.008              0.338                   -0.045                    0.474                -0.018                 0.522                   -0.045                    0.629                -0.051                  0.62
#> 11:           relative_bias_se                 0.088                  0.09              0.096                0.1                    0.088                    0.074                 0.094                 0.081                    0.088                    0.054                 0.088                 0.056
#> 12:                        mse                 0.003                 0.003             53.588             64.086                    0.003                    0.003                53.728                56.432                    0.003                    0.002                47.249                42.073
#> 13:                     mse_se                     0                     0              7.672              8.952                        0                        0                 7.647                  7.59                        0                        0                 6.596                 4.689
#> 14:                   coverage                  0.94                  0.94               0.95               0.93                     0.94                     0.91                  0.94                   0.9                     0.94                     0.76                  0.94                  0.77
#> 15:                coverage_se                 0.024                 0.024              0.022              0.026                    0.024                    0.029                 0.024                  0.03                    0.024                    0.043                 0.024                 0.042
#> 16:    bias_corrected_coverage                     1                     1                  1                  1                        1                        1                     1                     1                        1                        1                     1                     1
#> 17: bias_corrected_coverage_se                     0                     0                  0                  0                        0                        0                     0                     0                        0                        0                     0                     0
#> 18:       rejection_proportion                  0.17                  0.27               0.15               0.27                     0.17                     0.42                  0.15                   0.4                     0.17                     0.79                  0.16                  0.79
#> 19:    rejection_proportion_se                 0.038                 0.044              0.036              0.044                    0.038                    0.049                 0.036                 0.049                    0.038                    0.041                 0.037                 0.041
#> 20:                      n_sim                   100                   100                100                100                      100                      100                   100                   100                      100                      100                   100                   100
#> 21:                        p25                -0.091                -0.104            -12.485             -15.08                   -0.091                    -0.12                -12.59               -17.017                   -0.091                   -0.118               -12.216               -15.627
#> 22:                        p50                -0.061                -0.078             -8.664            -10.964                   -0.061                   -0.083                -8.904               -11.358                   -0.061                   -0.095                -8.336               -12.696
#> 23:                        p75                -0.026                -0.038             -3.246             -4.941                   -0.026                   -0.053                -3.486                -7.002                   -0.026                   -0.071                -3.654                -9.537
#>                      statistic primary__hrqol_at_eof primary__hrqol_at_eof primary__hrqol_auc primary__hrqol_auc secondary1__hrqol_at_eof secondary1__hrqol_at_eof secondary1__hrqol_auc secondary1__hrqol_auc secondary2__hrqol_at_eof secondary2__hrqol_at_eof secondary2__hrqol_auc secondary2__hrqol_auc

Installation

hrqolr isn’t on CRAN yet but can be installed from GitHub if you have the remotes package installed:

# install.packages("remotes") 
remotes::install_github("INCEPTdk/hrqolr")

You can also install the development version from directly from GitHub. Doing this requires the remotes package installed. The development version may contain additional features not yet available in the stable CRAN version, but may be unstable or lack documentation.

remotes::install_github("INCEPTdk/hrqolr@dev")

Issues and enhancements

We use the GitHub issue tracker for all bug/issue reports and proposals for enhancements.

Contributing

We welcome contributions directly to the code to improve performance as well as new functionality. For the latter, please first explain and motivate it in an issue.

Changes to the code base should follow these steps:

  • Fork the repository
  • Make a branch with an appropriate name in your fork
  • Implement changes in your fork, make sure it passes R CMD check (with neither errors, warnings, nor notes) and add a bullet at the top of NEWS.md with a short description of the change, your GitHub handle and the id of the pull request implementing the change (check the NEWS.md file to see the formatting)
  • Create a pull request into the dev branch of adaptr

Citation

If using hrqolr, please consider citing it:

citation(package = "hrqolr")
#> To cite package 'hrqolr' in publications use:
#> 
#>   Kaas-Hansen BS, Granholm A (2023). hrqolr: an R package for
#>   simulating health-related quality of life trajectories.
#>   https://inceptdk.github.io/hrqolr/
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Manual{,
#>     title = {{hrqolr}: an R package for simulating health-related quality of life trajectories},
#>     author = {Benjamin Skov Kaas-Hansen and Anders Granholm},
#>     year = {2023},
#>     url = {https://inceptdk.github.io/hrqolr/},
#>   }