-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTutorial.html
583 lines (523 loc) · 22.6 KB
/
Tutorial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Hena R. Ramay ([email protected])" />
<title>cytoMine: IMC CyTOF analysis Pipeline Tutorial</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/highlightjs-1.1/textmate.css" rel="stylesheet" />
<script src="site_libs/highlightjs-1.1/highlight.js"></script>
<link href="site_libs/font-awesome-4.5.0/css/font-awesome.min.css" rel="stylesheet" />
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<script type="text/javascript">
if (window.hljs && document.readyState && document.readyState === "complete") {
window.setTimeout(function() {
hljs.initHighlighting();
}, 0);
}
</script>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 60px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 65px;
margin-top: -65px;
}
.section h2 {
padding-top: 65px;
margin-top: -65px;
}
.section h3 {
padding-top: 65px;
margin-top: -65px;
}
.section h4 {
padding-top: 65px;
margin-top: -65px;
}
.section h5 {
padding-top: 65px;
margin-top: -65px;
}
.section h6 {
padding-top: 65px;
margin-top: -65px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">IMC CytoMine pipeline</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">
<span class="fa fa-home"></span>
Home
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
<span class="fa fa-cog"></span>
Introduction
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="preprocessing.html">Preporcessing</a>
</li>
<li>
<a href="visualization.html">Visulaization</a>
</li>
<li>
<a href="clustering.html">Cell Clustering /Cell subset Detection</a>
</li>
<li>
<a href="discovery.html">Discovery</a>
</li>
</ul>
</li>
<li>
<a href="Tutorial.html">
<span class="fa fa-book"></span>
Tutorial
</a>
</li>
<li>
<a href="Helpful_links.html">
<span class="fa fa-ambulance"></span>
Helpful Links
</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/WCMCBioinformatics/CyTOF">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
<li>
<a href="about.html">
<span class="fa fa-info"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">cytoMine: IMC CyTOF analysis Pipeline Tutorial</h1>
<h4 class="author"><em>Hena R. Ramay (<a href="mailto:[email protected]">[email protected]</a>) <a href="#fn1" class="footnoteRef" id="fnref1"><sup>1</sup></a></em></h4>
</div>
<p><br class="long"/></p>
<div id="intorduction" class="section level1">
<h1>1. Intorduction</h1>
<p>The following CyTOF analysis pipeline called <b>cytoMine</b> is developed by the IMC bioinformatics platform and utilizes state-of-the art existing R packages and custom code. The goal of this pipeline is to provide a simple command line interface so users can process their FCS files, transform, visualize and cluster their mass cytometry data.</p>
<div id="pipleline-structure" class="section level2">
<h2>Pipleline Structure</h2>
<p><br></p>
<ul>
<li><p>Preprocessing</p>
<ul>
<li>Normalization</li>
<li>Debarcoding</li>
<li>Randomize 0 values between -1 and 0</li>
<li>Transformations</li>
</ul></li>
</ul>
<p><br></p>
<ul>
<li>Visualization
<ul>
<li>Basic plots for cell counts per sample, density plots for markers and PCA</li>
<li>Plot markers for inspection</li>
<li>t-SNE</li>
<li>t-SNE with different marker expressions</li>
</ul></li>
</ul>
<p><br></p>
<ul>
<li><p>Cell Clustering - automated</p>
<ul>
<li>FlowSOM</li>
<li>ClusterX</li>
</ul></li>
</ul>
<p><br></p>
<ul>
<li><p>Cluster Merging based on expert input</p></li>
<li><p>Discovery</p>
<ul>
<li>Biomarker discovery :Differential cluster analysis and marker analysis. (Automatic implementation is for two conditions only. For more complicated comparison, please contact our bioinformatician)</li>
</ul></li>
</ul>
<p><br></p>
</div>
</div>
<div id="prerequisites" class="section level1">
<h1>2. Prerequisites</h1>
<p>You must know how to load files on the Snyder server and basic UNIX commands to be able to run this pipeline. If you are new to UNIX, please take a basic online course on shell or unix commands. One recommendation is dataCamp’s introduction to shell for data science, <a href="https://www.datacamp.com/courses/introduction-to-shell-for-data-science" class="uri">https://www.datacamp.com/courses/introduction-to-shell-for-data-science</a>. Doing first two chapters from this course is enough to run the pipeline.</p>
<p><br class="long"/></p>
</div>
<div id="where-are-your-cytof-files-on-the-server" class="section level1">
<h1>3. Where are your CYTOF files on the server?</h1>
<p>Once an experiment has finished, the CyTOF files are transferred to the Snyder server (Snyder.chgi.ucalgary.ca). Files are in: <b> /export/data/rawdata/npmcCytof/[PI’sname]/[YourName]/[Date]/ </b></p>
<p>You can access them through programs like Filezilla by sftp. Please make sure that you have logged into VPN before connecting to the server.</p>
<p><br class="long"/></p>
</div>
<div id="how-to-transfer-files-to-snyder" class="section level1">
<h1>4: How to transfer files to Snyder</h1>
<p>If you have modified fcs files by gating on them, you will need to transfer them back to the server for processing. Similar to how files are transferred from the server to your computer, you can transfer file back to your home directory <b> (/home/[username])</b> and into a specified folder/directory for being processed by cytoMine.</p>
<p><br class="long"/></p>
</div>
<div id="input-directory-and-required-files" class="section level1">
<h1>5: Input directory and required files</h1>
<p>Please first make a project folder. Then in this folder create a folder which has all the .fcs files and all other required .csv files. In this tutorial ‘data’ is used as the input directory.</p>
<p>For example take a look at figure 1. In my home directory /export/home/hramay I have created a directory Cytof_test and in this directory I have created a data directory which contains all input files. Input directory name is a required parameter of the pipeline and feel free to chose any name for it.</p>
<p><br></p>
<div class="figure">
<img src="img/directories.png" />
</div>
<p><br> <br></p>
<div id="required-inputfiles" class="section level2">
<h2>Required InputFiles</h2>
<p>All required inputFiles mentioned bellow should be in the inputDir. Default name for each file is provided. </p>
<table style="width:74%;">
<colgroup>
<col width="13%" />
<col width="59%" />
</colgroup>
<thead>
<tr class="header">
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><a href="https://wcmcbioinformatics.github.io/CyTOF/examples/sample_info.csv">sample_info.csv</a></td>
<td>This file holds information about your filenames, grouping, type etc.</td>
</tr>
<tr class="even">
<td><a href="https://wcmcbioinformatics.github.io/CyTOF/examples/marker_list.csv">marker_list.csv</a></td>
<td>This file holds information about the markers of interest.</td>
</tr>
</tbody>
</table>
<p><br class="long"/> <br class="long"/></p>
</div>
</div>
<div id="output-files" class="section level1">
<h1>6. Output files</h1>
<p>All output files will be stored in the specified output directory. Directory name is a required parameter of the pipeline. In the above directory structure, results is the output folder. In this folders, subfolders are created with results from different steps of the pipeline. These subfolder names are self explanatory.</p>
<p><br class="long"/> <br class="long"/></p>
</div>
<div id="usage" class="section level1">
<h1>7. Usage</h1>
<p>All commands in this pipeline can be run on the Snyder console. Each command is structured in the following way:</p>
<pre><code>COMMAND ( COMPULSARY Input parameters) [OPTIONAL Input parameters]}</code></pre>
<p>All input parameters that are compulsory are shown inside the parentheses and optional inputs to a command are shown in square brackets. By typing the following command you can get help about the available options</p>
<pre><code>cytoMine --help</code></pre>
<p><br> <br> <br> <br> <br></p>
<pre><code>Usage:
cytoMine (--inputDir=<files> --outputDir=<results_dir> --mode=<mode>) [--transformMethod=<methodName> --barcodeScheme=<barcodeScheme> --beadMasses=<beads>
--FlowSom_k=<ClusterN> --downSample=<number> --perplexity=<p> --theta=<theta> --max_iter=<max_iter>
--num_threads=<num_threads> --sampleFile=<csvfile> --markerFile=<csvfile> --reclustFSFile=<csvfile>
--reclustCXFile=<csvfile>]
Options:
--inputDir=<files> Input FCS files direcotry
--outputDir=<dir> Output directory for data and plots
--mode=<mode> [defualt full] modes available: basic, concat, channels or full
--beadMasses=<beads> Bead masses to be used for normalization (optional)
--barcodeScheme=<filename> filename for the barcode scheme for debarcoding (optional)
--transformMethod=<transform> [default logicl] options:autoLgcl,none,arcsinh,cytofAsinh
--FlowSom_k=<N of clusters> Number of clusters to calculate with FLOWSOM
--downSample=<number of cells> [default 5000] or set your own numnber
--perplexity=<p> [default 30 ] Perplexity parameter
--theta=<theta> [default 0.5 ] Speed/accuracy trade-off (increase for less accuracy),
set to 0.0 for exact TSNE (default: 0.5)
--max_iter=<max_iter> [default 1000] Number of iterations
--num_threads=<num_threads> [default 2] Number of cores to be used for parallel runs.
--sampleFile=<csvfile> [default Sample_info.csv in inputDir] else any filename in inputDir.
--markerFile=<csvfile> [default marker_list.csv in inputDir] else any filename in inputDir.
--reclustFSFile=<csvfile> [default merge_FlowSom.csv in inputDir] else any filename in inputDir.
This file is used to merge clusters generated by FlowSOM using user
provided merge list
--reclustCXFile=<csvfile> [default merge_clusterx.csv in inputDir] else any filename in inputDir.
This file is used to merge clusters generated by ClusterX using user
provided merge list</code></pre>
<p><br></p>
</div>
<div id="run-cytomine" class="section level1">
<h1>8. Run cytoMine</h1>
<p>Depending on the parts of the pipeline that you wish to run, you can chose the optional arguments and modes. The simplest command is as follows:</p>
<pre><code>cytoMine --inputDir=<directory> --outputDir=<directory> --mode=<mode></code></pre>
<p>There are different modes of the pipeline that can be run and are explained bellow:</p>
<p><br></p>
</div>
<div id="modes" class="section level1">
<h1>9. Modes</h1>
<p>cytoMine is developed so users can do different level of pipeline executions and do not have to wait for the full pipeline to run if they just wanted some very basic plots to understand their data. For this purpose, cytoMine has four working modes</p>
<p><br> <br></p>
<div id="modechannels" class="section level2">
<h2>–mode=channels</h2>
<p>In this mode, a user can find out how the channels are named/described in their fcs files. This is important because the marker list that the user input must match the names given in the description parameter of the fcs file.</p>
<p><br></p>
<p><em>An example of how to run this mode is:</em></p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=channels
</code></pre>
<p>A Channels.csv file is stored in the outputDir for quick look.</p>
<p><br> <br></p>
</div>
<div id="modeconcat" class="section level2">
<h2>–mode=concat</h2>
<p>In this mode, a user can concatenate multiples files in to one. The resulting fcs file will be stored in the output folder. You can then re-run these samples along with others in the mode full or basic by adding them to the sample_info.csv file and placing them into the input folder.</p>
<p><br></p>
<p><em>An example of how to run this mode is:</em></p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=concat
</code></pre>
<p><br> <br></p>
</div>
<div id="modebasic" class="section level2">
<h2>–mode=basic</h2>
<p>In the basic mode, only the very basic plots are generated to give the user idea about their data.</p>
<p><br></p>
<p><em>An example of how to run this mode is:</em></p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=basic
</code></pre>
<p>The output is saved in the basicPlots folder in outputDir.</p>
<p><br></p>
<table style="width:74%;">
<colgroup>
<col width="13%" />
<col width="59%" />
</colgroup>
<thead>
<tr class="header">
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>counts_plot.png</td>
<td>barplots of cell counts in each sample file</td>
</tr>
<tr class="even">
<td>density_plot.png</td>
<td>Density plots for each marker in the marker list for each sample</td>
</tr>
<tr class="odd">
<td>PCA_plot.png</td>
<td>PCA plots for samples</td>
</tr>
</tbody>
</table>
<p><br> <br></p>
</div>
<div id="modefull" class="section level2">
<h2>–mode=full</h2>
<p>In this mode the whole cytoMine pipeline is executed. All the results are saved in the outputDir folder or appropriate subfolders. All the data is also stored in an R object called cytoMine.RDATA. This is used if the user wants to re-run the code for expert annotated re-clustering/merging of the data.</p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=full
</code></pre>
<p><br> <br></p>
</div>
<div id="modemergeclusters" class="section level2">
<h2>–mode=mergeClusters</h2>
<p>This mode is used only after the cytoMine pipeline has been executed in the full mode first. This mode is used to re-assign or merge clusters generated by FLOWSOM or ClusterX.</p>
<p><br></p>
<p><em>An example of invoking mergeCluster mode with FlowSOM merging of clusters</em></p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=mergeCluster --reclustFSFile=merge_cluster.csv
</code></pre>
<p>An example of the merge_cluster.csv is <a href="https://wcmcbioinformatics.github.io/CyTOF/examples/merge_cluster.csv">here</a>. Please make sure that the column names are exactly the same.</p>
<p><br class="long"/></p>
</div>
</div>
<div id="use-cases" class="section level1">
<h1>10. Use Cases</h1>
<p>Follow are some of the use cases of the pipeline:</p>
<p><br></p>
<div id="i.-find-out-correct-channel-descriptions" class="section level2">
<h2>i. Find out correct Channel descriptions</h2>
<p>It is pivotal that channel descriptions are used in your markers.csv file not the marker names. If they do not match, you will get an error as follows:</p>
<p><br></p>
<pre><code>"CytoMine: ** Error** Marker list does not match fcs file description.
Please take a look at the 'desc' column in Channels.csv file in results directory."</code></pre>
<p><b>Please take a look at the Channels.csv file and make sure that markers in the markers.csv match the desc column of the Channels.csv file.</b></p>
<p><br></p>
</div>
<div id="ii.-run-pipeline-to-get-basic-plots-to-know-your-data." class="section level2">
<h2>ii. Run pipeline to get basic plots to know your data.</h2>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=basic
</code></pre>
<p><br></p>
</div>
<div id="iii.-run-full-pipeline-with-normlization-and-debarcoding" class="section level2">
<h2>iii. Run full pipeline with normlization and debarcoding</h2>
<p>If you wish to use raw fcs files that are not normalized or debarcoded, you can use cytoMine to do so as follows:</p>
<pre><code>cytoMine ./analysis.R --inputDir=data --outputDir=results --mode=full --beadMasses=103,105,106
--barcodeScheme=bc.txt</code></pre>
<p>–beadMasses parameter takes a list of bead masses for normalization and –barcodeScheme parameter takes a file as input which contains the barcode scheme. An example of this file is <a href="https://wcmcbioinformatics.github.io/CyTOF/examples/bc.txt">bc.txt</a>. You can normalize and debarcode separately also.</p>
<p>An optional parameter for normalization is norm_to which is a flowFrame or name of an FCS file from which baseline values should be computed and to which the input data should be normalized.</p>
<p><br></p>
</div>
<div id="iv.-run-full-pipeline-without-normlizing-or-debarcoding" class="section level2">
<h2>iv. Run full pipeline without normlizing or debarcoding</h2>
<pre><code>cytoMine ./analysis.R --inputDir=data --outputDir=results --mode=full </code></pre>
<p><br></p>
</div>
<div id="v.-concatenate-files-before-running-the-pipeline" class="section level2">
<h2>v. Concatenate files before running the pipeline</h2>
<p>If you wish to concatenate fcs files, you can set up –concat option to true. This will save the resulting file in the outputDiR</p>
<pre><code>cytoMine ./analysis.R --inputDir=data --outputDir=results --mode=concat </code></pre>
<p><br></p>
</div>
<div id="vi.-merge-assigned-clusters-by-automated-algorithms-based-on-expert-cluster-annotations" class="section level2">
<h2>vi. Merge assigned clusters by automated algorithms based on expert cluster annotations</h2>
<p>For FlowSOM clusters:</p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=mergeCluster --reclustFSFile=merge_cluster.csv
</code></pre>
<p><br></p>
<p>For ClusterX clusters:</p>
<pre><code>cytoMine --inputDir=data --outputDir=results --mode=mergeCluster --reclustCXFile=merge_cluster.csv
</code></pre>
<p>An example of the merge_cluster.csv is <a href="https://wcmcbioinformatics.github.io/CyTOF/examples/merge_cluster.csv">here</a>. Please make sure that the column names are exactly the same.</p>
<p><br> <br></p>
</div>
</div>
<div id="download-data-from-the-server" class="section level1">
<h1>11. Download data from the server</h1>
<p>To transfer your output folder with all the results to your computer, please use Filezilla or other such programs to copy files.</p>
</div>
<div id="cautionary-notes" class="section level1">
<h1>12. Cautionary Notes</h1>
<p>It is very important to spend time in planning your experiment. A good, thought through design will save you from having severe batch effects in your data that cannot be rectified later on by means of statistical methods. Please use barcoding where possible. If with barcoding, you have multiple runs, please include a control sample in each run so that it can be used later one to normalize all of the data. Also try to mix control and condition samples in each run.</p>
<p>If you run samples separately and on different days, you are bound to have severe batch effect. This means that the main difference in your samples will be the day effect. Here is an example of a PCA plot of such data. There are two conditions PKH and Saline with samples run on two different days and the main variability in this data is the day effect. One can avoid such situations by barcoding samples and introducing control samples in each run.</p>
<div class="figure">
<img src="https://wcmcbioinformatics.github.io/CyTOF/img/PCA_example.png" alt="Example" />
<p class="caption">Example</p>
</div>
</div>
<div class="footnotes">
<hr />
<ol>
<li id="fn1"><p>Bioinformatics Platform @ International Microbiome Centre, University of Calgary, Calgary, AB<a href="#fnref1">↩</a></p></li>
</ol>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>