-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwebqa_pipeline.py
373 lines (320 loc) · 12.2 KB
/
webqa_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import faiss
import numpy as np
import torch
import ipdb
import json
from tqdm import tqdm
from utils.metrics import webqa_metrics_approx
from utils.indexing_faiss import text_to_image
from utils.model_series import load_generator, load_reranker, load_clip
from utils.utils import cal_relevance, infer
import argparse
def load_datasets(args):
with open("datasets/WebQA_" + args.datasets + "_image.json", "r") as f:
val_dataset = json.load(f)
if args.noise_ratio == 0:
with open(
"datasets/WebQA_" + args.datasets + "_image_index_to_id.json", "r"
) as f:
index_to_image_id = json.load(f)
else:
with open(
"datasets/WebQA_test_image_index_to_id_noise"
+ f"{int(args.noise_ratio * 100)}.json",
"r",
) as f:
index_to_image_id = json.load(f)
index = faiss.read_index(
"datasets/faiss_index/WebQA_"
+ args.datasets
+ "_image_"
+ args.clip_type
+ ".index"
)
return val_dataset, index, index_to_image_id
# ------------- CLIP + Rerank -------------
def clip_rerank_generate(
val_dataset,
ind,
index_to_image_id,
model_path,
generator_path,
reranker_model,
tokenizer,
image_processor,
generator_model,
save_path,
clip_model,
clip_tokenizer,
clip_type,
filter,
mode,
rerank_off,
use_caption,
topk=20,
):
retrieval_correct = 0
retrieval_num = 0
retrieval_pos_num = 0
### For Retrieval ###
retrieval_correct_5 = 0
retrieval_num_5 = 0
retrieval_correct_10 = 0
retrieval_num_10 = 0
acc_scores = {"ALL": [], "Single": [], "Multi": []}
hard_examples = {}
probabilities = {"gt": [], "false": []}
if use_caption:
if mode == "test":
with open("datasets/WebQA_caption_test.json", "r") as f:
captions = json.load(f)
elif mode == "dev" or mode == "train":
with open("datasets/WebQA_caption_train_dev.json", "r") as f:
captions = json.load(f)
with open(save_path, "w") as f:
f.write("{\n")
for guid in tqdm(val_dataset):
datum = val_dataset[guid]
question = datum["Q"]
em_answer = datum["EM"] if "EM" in datum else datum["A"][0]
pos_imgs = datum["img_posFacts"]
qcate = datum["Qcate"]
pos_source = []
retrieved_imgs = []
rerank_imgs = {}
for item in pos_imgs:
pos_source.append(str(item["image_id"]))
D, I = text_to_image(
question, clip_model, ind, topk, clip_type, clip_tokenizer
)
for d, j in zip(D[0], I[0]):
img_id = index_to_image_id[str(j)]
retrieved_imgs.append(str(img_id))
if not rerank_off:
for id in retrieved_imgs:
if mode == "test":
img_path = "datasets/val_image/" + id + ".png"
elif mode == "dev" or mode == "train":
img_path = "finetune/tasks/train_img/" + id + ".png"
if use_caption:
query = (
"Image Caption: "
+ captions[id]
+ "\nQuestion: "
+ question
+ "\nBased on the image and its caption, is the image relevant to the question? Answer 'Yes' or 'No'."
)
else:
query = (
"Question: "
+ question
+ "\nIs this image relevant to the question? Answer 'Yes' or 'No'."
)
prob_yes = cal_relevance(
model_path,
img_path,
query,
reranker_model,
tokenizer,
image_processor,
)
rerank_imgs[id] = float(prob_yes)
top_sorted_imgs = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[
:2
]
)
filtered_imgs = [
key for key, val in top_sorted_imgs.items() if val >= filter
]
### For Retrieval ###
top_sorted_imgs_5 = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[
:5
]
)
top_sorted_imgs_10 = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[
:10
]
)
filtered_imgs_5 = [
key for key, val in top_sorted_imgs_5.items() if val >= filter
]
filtered_imgs_10 = [
key for key, val in top_sorted_imgs_10.items() if val >= filter
]
intersect = set(pos_source).intersection(set(top_sorted_imgs.keys()))
remaining = set(top_sorted_imgs.keys()).difference(intersect)
for key in intersect:
probabilities["gt"].append(top_sorted_imgs[key])
for key in remaining:
probabilities["false"].append(top_sorted_imgs[key])
else:
top_sorted_imgs = retrieved_imgs
filtered_imgs = retrieved_imgs
intersect = set(pos_source).intersection(set(retrieved_imgs))
remaining = set(top_sorted_imgs).difference(intersect)
if len(intersect) == 0:
hard_examples[guid] = datum
retrieval_num += len(filtered_imgs)
retrieval_pos_num += len(pos_source)
retrieval_correct += len(set(pos_source).intersection(set(filtered_imgs)))
### For Retrieval ###
if not rerank_off:
retrieval_num_5 += len(filtered_imgs_5)
retrieval_correct_5 += len(
set(pos_source).intersection(set(filtered_imgs_5))
)
retrieval_num_10 += len(filtered_imgs_10)
retrieval_correct_10 += len(
set(pos_source).intersection(set(filtered_imgs_10))
)
if generator_model != None:
IMAGE_PATH = ""
for i in range(len(filtered_imgs)):
if mode == "test":
IMAGE_PATH += "datasets/val_image/" + filtered_imgs[i] + ".png"
elif mode == "dev":
IMAGE_PATH += (
"finetune/tasks/train_img/" + filtered_imgs[i] + ".png"
)
if i != len(filtered_imgs) - 1:
IMAGE_PATH += ","
output = infer(
generator_path,
IMAGE_PATH,
question,
generator_model,
tokenizer,
image_processor,
from_array=False,
)
accuracy = webqa_metrics_approx(output, em_answer, qcate)
acc_scores["ALL"].append(accuracy)
if len(pos_imgs) == 1:
acc_scores["Single"].append(accuracy)
elif len(pos_imgs) > 1:
acc_scores["Multi"].append(accuracy)
output_json = {
"question": question,
"generator_answer": output,
"em_answer": em_answer,
"gt_images": pos_source,
"retrieved_images": top_sorted_imgs,
}
new_data = json.dumps({guid: output_json})[1:-1]
f.write(f" {new_data},\n")
f.write("}")
pre = retrieval_correct / retrieval_num
recall = retrieval_correct / retrieval_pos_num
f1 = 2 * pre * recall / (pre + recall)
print("Retrieval pre:", pre)
print("Retrieval recall:", recall)
print("Retrieval F1:", f1)
if not rerank_off:
with open(
"logs/webqa/"
+ reranker_model_path.split("/")[-1]
+ "_webqa_distribution_prob_"
+ mode
+ ".json",
"w",
) as json_file:
json.dump(probabilities, json_file, indent=4)
pre_5 = retrieval_correct_5 / retrieval_num_5
recall_5 = retrieval_correct_5 / retrieval_pos_num
f1_5 = 2 * pre_5 * recall_5 / (pre_5 + recall_5)
print("Retrieval pre_5:", pre_5)
print("Retrieval recall_5:", recall_5)
print("Retrieval F1_5:", f1_5)
pre_10 = retrieval_correct_10 / retrieval_num_10
recall_10 = retrieval_correct_10 / retrieval_pos_num
f1_10 = 2 * pre_10 * recall_10 / (pre_10 + recall_10)
print("Retrieval pre_10:", pre_10)
print("Retrieval recall_10:", recall_10)
print("Retrieval F1_10:", f1_10)
print("Single Img ACC:", np.mean(acc_scores["Single"]))
print("Multi Imgs ACC:", np.mean(acc_scores["Multi"]))
print("Generation ACC:", np.mean(acc_scores["ALL"]))
print("Hard examples count:", len(hard_examples))
return hard_examples
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--clip_type", type=str, default="clip")
parser.add_argument("--reranker_model", type=str, default="caption_lora")
parser.add_argument("--generator_model", type=str, default="noise_injected_lora")
parser.add_argument("--series", type=str, default="llava")
parser.add_argument("--datasets", type=str, default="test")
parser.add_argument("--filter", type=float, default=0)
parser.add_argument("--rerank_off", default=False, action="store_true")
parser.add_argument("--clip_topk", type=int, default=20)
parser.add_argument("--noise_ratio", type=float, default=0)
args = parser.parse_args()
print(args)
clip_model, _, clip_tokenizer = load_clip(args)
if not args.rerank_off:
(tokenizer, reranker_model, image_processor), reranker_model_path = (
load_reranker(args, "webqa")
)
else:
reranker_model = None
reranker_model_path = "off/rerank_off"
if args.generator_model == "blend_lora":
generator_model = reranker_model
generator_path = reranker_model_path
elif args.generator_model == "None":
generator_model = None
generator_path = None
else:
(tokenizer, generator_model, image_processor), generator_path = load_generator(
args, "webqa"
)
val_dataset, index, index_to_image_id = load_datasets(args)
save_path = (
"logs/webqa/"
+ reranker_model_path.split("/")[-1]
+ "_webqa_"
+ (
"_".join(
[
attr
for attr in [
"answer_set",
args.reranker_model,
args.generator_model,
str(args.filter)[2:],
(
"clip_top" + str(args.clip_topk)
if args.clip_topk != 20
else ""
),
args.datasets,
]
if attr != ""
]
)
+ ".json"
)
)
with torch.no_grad():
clip_rerank_generate(
val_dataset,
index,
index_to_image_id,
reranker_model_path,
generator_path,
reranker_model,
tokenizer,
image_processor,
generator_model,
save_path,
clip_model,
clip_tokenizer,
clip_type=args.clip_type,
filter=args.filter,
mode=args.datasets,
rerank_off=args.rerank_off,
use_caption=True if "caption" in args.reranker_model else False,
topk=args.clip_topk,
)