-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwebqa_oracle.py
159 lines (130 loc) · 4.48 KB
/
webqa_oracle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
import ipdb
import json
from tqdm import tqdm
import numpy as np
from utils.metrics import webqa_metrics_approx
from utils.model_series import load_generator
from utils.utils import infer
import argparse
############### Noise Injection ###############
def inject_noise(val_dataset, noise_ratio=0):
id_to_image = {}
idx = []
for _, datum in val_dataset.items():
pos_imgs = datum["img_posFacts"]
for img in pos_imgs:
if not (str(img["image_id"]) in id_to_image):
idx.append(str(img["image_id"]))
id_to_image[str(img["image_id"])] = str(img["image_id"])
if noise_ratio:
origin_length = len(idx)
np.random.shuffle(idx)
noise_length = int(noise_ratio * origin_length)
shuffle_index = [id_to_image[i] for i in idx[:noise_length]]
np.random.shuffle(shuffle_index)
for i, shuffle_value in enumerate(shuffle_index):
id_to_image[idx[i]] = shuffle_value
count = 0
noise = 0
for key, value in id_to_image.items():
if key == value:
count += 1
else:
noise += 1
cal_noise_ratio = noise / (count + noise)
print(
"=> the noise_ratio is {} and the cal_noise_ratio is {}".format(
noise_ratio, cal_noise_ratio
)
)
with open(
"WebQA_test_image_id_to_image_noise" + f"{int(noise_ratio*100)}.json", "w"
) as f:
json.dump(id_to_image, f, indent=4)
return id_to_image
############### CLIP + Rerank ###############
def baseline_generate(
val_dataset,
generator_path,
tokenizer,
image_processor,
generator_model,
mode,
noise_ratio=0,
):
acc_scores = {"ALL": [], "Single": [], "Multi": []}
if noise_ratio != 0:
# id_to_image = inject_noise(val_dataset, noise_ratio)
with open(
"WebQA_test_image_id_to_image_noise" + f"{int(noise_ratio*100)}.json", "r"
) as f:
id_to_image = json.load(f)
for guid in tqdm(val_dataset):
datum = val_dataset[guid]
question = datum["Q"]
em_answer = datum["EM"]
pos_imgs = datum["img_posFacts"]
qcate = datum["Qcate"]
pos_source = []
for item in pos_imgs:
if noise_ratio != 0:
pos_source.append(id_to_image[str(item["image_id"])])
else:
pos_source.append(str(item["image_id"]))
IMAGE_PATH = ""
for i in range(len(pos_source)):
if mode == "test":
IMAGE_PATH += "datasets/val_image/" + pos_source[i] + ".png"
elif mode == "dev":
IMAGE_PATH += "finetune/tasks/train_img/" + pos_source[i] + ".png"
if i != len(pos_source) - 1:
IMAGE_PATH += ","
output = infer(
generator_path,
IMAGE_PATH,
question,
generator_model,
tokenizer,
image_processor,
from_array=False,
)
accuracy = webqa_metrics_approx(output, em_answer, qcate)
acc_scores["ALL"].append(accuracy)
if len(pos_imgs) == 1:
acc_scores["Single"].append(accuracy)
elif len(pos_imgs) > 1:
acc_scores["Multi"].append(accuracy)
print("Single Img ACC:", np.mean(acc_scores["Single"]))
print("Multi Imgs ACC:", np.mean(acc_scores["Multi"]))
print("Generation ACC:", np.mean(acc_scores["ALL"]))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--datasets", type=str, default="test")
parser.add_argument("--generator_model", type=str, default="noise_injected_lora")
parser.add_argument("--series", type=str, default="llava")
parser.add_argument("--noise_ratio", type=float, default=0)
args = parser.parse_args()
print(args)
(tokenizer, generator_model, image_processor), generator_path = load_generator(
args, "webqa"
)
if args.datasets == "test":
with open("datasets/WebQA_test_image.json", "r") as f:
val_dataset = json.load(f)
elif args.datasets == "dev":
with open("datasets/WebQA_dev_image.json", "r") as f:
val_dataset = json.load(f)
with torch.no_grad():
baseline_generate(
val_dataset,
generator_path,
tokenizer,
image_processor,
generator_model,
mode=args.datasets,
noise_ratio=args.noise_ratio,
)
print(args)
if __name__ == "__main__":
main()