-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathflickr30k_pipeline.py
179 lines (146 loc) · 5.39 KB
/
flickr30k_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import faiss
import clip
import torch
import ipdb
import json
from tqdm import tqdm
from utils.indexing_faiss import text_to_image
from utils.utils import cal_relevance
from utils.model_series import load_reranker, load_clip
import pandas as pd
import argparse
# ------------- CLIP + Rerank -------------
def clip_rerank_generate(
val_dataset,
ind,
index_to_image_id,
model_path,
reranker_model,
tokenizer,
image_processor,
clip_model,
clip_tokenizer,
clip_type,
filter,
rerank_off,
topk=20,
):
retrieval_correct = 0
retrieval_num = 0
retrieval_pos_num = 0
### For Retrieval ###
retrieval_correct_5 = 0
retrieval_num_5 = 0
retrieval_correct_10 = 0
retrieval_num_10 = 0
captions = val_dataset["caption"]
images = val_dataset["image"]
for i in tqdm(range(len(captions))):
cap = captions[i]
pos_source = [images[i][:-4]]
retrieved_imgs = []
rerank_imgs = {}
D, I = text_to_image(cap, clip_model, ind, topk, clip_type, clip_tokenizer)
for d, j in zip(D[0], I[0]):
img_id = index_to_image_id[str(j)]
retrieved_imgs.append(str(img_id))
if not rerank_off:
for id in retrieved_imgs:
img_path = "finetune/tasks/flickr30k/Images/" + id + ".jpg"
query = (
"Image Caption: "
+ cap
+ "\nIs the image relevant to the caption? Answer 'Yes' or 'No'."
)
prob_yes = cal_relevance(
model_path,
img_path,
query,
reranker_model,
tokenizer,
image_processor,
)
rerank_imgs[id] = float(prob_yes)
top_sorted_imgs = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[:1]
)
filtered_imgs = [
key for key, val in top_sorted_imgs.items() if val >= filter
]
### For Retrieval ###
top_sorted_imgs_5 = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[:5]
)
top_sorted_imgs_10 = dict(
sorted(rerank_imgs.items(), key=lambda item: item[1], reverse=True)[:10]
)
filtered_imgs_5 = [
key for key, val in top_sorted_imgs_5.items() if val >= filter
]
filtered_imgs_10 = [
key for key, val in top_sorted_imgs_10.items() if val >= filter
]
else:
top_sorted_imgs = retrieved_imgs
filtered_imgs = retrieved_imgs
retrieval_num += len(filtered_imgs)
retrieval_pos_num += len(pos_source)
retrieval_correct += len(set(pos_source).intersection(set(filtered_imgs)))
## For Retrieval ###
retrieval_num_5 += len(filtered_imgs_5)
retrieval_correct_5 += len(set(pos_source).intersection(set(filtered_imgs_5)))
retrieval_num_10 += len(filtered_imgs_10)
retrieval_correct_10 += len(set(pos_source).intersection(set(filtered_imgs_10)))
pre = retrieval_correct / retrieval_num
recall = retrieval_correct / retrieval_pos_num
f1 = 2 * pre * recall / (pre + recall)
print("Retrieval pre:", pre)
print("Retrieval recall:", recall)
print("Retrieval F1:", f1)
pre_5 = retrieval_correct_5 / retrieval_num_5
recall_5 = retrieval_correct_5 / retrieval_pos_num
f1_5 = 2 * pre_5 * recall_5 / (pre_5 + recall_5)
print("Retrieval pre_5:", pre_5)
print("Retrieval recall_5:", recall_5)
print("Retrieval F1_5:", f1_5)
pre_10 = retrieval_correct_10 / retrieval_num_10
recall_10 = retrieval_correct_10 / retrieval_pos_num
f1_10 = 2 * pre_10 * recall_10 / (pre_10 + recall_10)
print("Retrieval pre_10:", pre_10)
print("Retrieval recall_10:", recall_10)
print("Retrieval F1_10:", f1_10)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--clip_type", type=str, default="clip")
parser.add_argument("--reranker_model", type=str, default="caption_lora")
parser.add_argument("--series", type=str, default="llava")
parser.add_argument("--filter", type=float, default=0)
parser.add_argument("--rerank_off", default=False, action="store_true")
parser.add_argument("--clip_topk", type=int, default=20)
args = parser.parse_args()
print(args)
clip_model, _, clip_tokenizer = load_clip(args)
(tokenizer, reranker_model, image_processor), reranker_model_path = load_reranker(
args, "flickr30k"
)
val_dataset = pd.read_csv("datasets/flickr30k_test_karpathy.txt")
with open("datasets/flickr30k_test_image_index_to_id.json", "r") as f:
index_to_image_id = json.load(f)
index = faiss.read_index("datasets/faiss_index/flickr30k_test_image_" + args.clip_type + ".index")
with torch.no_grad():
clip_rerank_generate(
val_dataset,
index,
index_to_image_id,
reranker_model_path,
reranker_model,
tokenizer,
image_processor,
clip_model,
clip_tokenizer,
clip_type=args.clip_type,
filter=args.filter,
rerank_off=args.rerank_off,
topk=args.clip_topk,
)
print(args)