-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_path_together.py
43 lines (37 loc) · 1.4 KB
/
build_path_together.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import subprocess
from concurrent.futures import ThreadPoolExecutor
from itertools import product
import datetime
def build_path(params):
dataset, setting, train_size, max_path_hops = params
model_params = [
'--dataset', dataset,
'--setting', setting,
'--train_size', train_size,
'--max_path_hops', max_path_hops
]
command = ["python", "build_close_path.py"] + model_params
subprocess.run(command)
def main():
datasets = ["FB15k-237-subset", "NELL-995-subset", "WN18RR-subset"]
settings = ["transductive"]
train_sizes = ["1000", "2000"]
max_path_hops = "3"
# datasets = ["FB15k-237-subset"]
# settings = ["inductive"]
# train_sizes = ["full"]
parameter_sets = []
for setting in settings:
if setting == "inductive":
for dataset in datasets:
parameter_sets.append((dataset, setting, "full", max_path_hops))
if setting == "transductive":
for dataset in datasets:
for train_size in train_sizes:
parameter_sets.append((dataset, setting, train_size, max_path_hops))
with ThreadPoolExecutor(max_workers=len(parameter_sets)) as executor:
futures = [executor.submit(build_path, params) for params in parameter_sets]
for future in futures:
future.result()
if __name__ == "__main__":
main()