-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
149 lines (133 loc) · 5.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import argparse
import json
import time
from datetime import datetime
from utils.utils import get_tensorboard_writer
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='bigru_endef')
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--aug_prob', type=float, default=0.1)
parser.add_argument('--max_len', type=int, default=170)
parser.add_argument('--early_stop', type=int, default=5)
parser.add_argument('--root_path', default='./data/')
parser.add_argument('--batchsize', type=int, default=64)
parser.add_argument('--seed', type=int, default=2378)
parser.add_argument('--gpu', default='0')
parser.add_argument('--emb_dim', type=int, default=768)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--save_log_dir', default= './logs')
parser.add_argument('--save_param_dir', default= './param_model')
parser.add_argument('--param_log_dir', default = './logs/param')
parser.add_argument('--tensorboard_dir', default='./logs/tensorlog')
parser.add_argument('--bert_path', default = 'chinese-bert-wwm-ext')
parser.add_argument('--data_type', default = 'online')
parser.add_argument('--data_name', default = '')
parser.add_argument('--eval_mode', type=bool, default = False)
parser.add_argument('--split_level', default = 'monthly')
parser.add_argument('--specific_season', type=int, default = -1)
parser.add_argument('--train_shuffle', type=bool, default = False)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
from grid_search import Run
import torch
import numpy as np
import random
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print('lr: {}; model name: {}; batchsize: {}; epoch: {}; gpu: {};'.format \
(args.lr, args.model_name, args.batchsize, args.epoch, args.gpu))
print('data_type: {}; data_path: {}; data_name: {};'.format \
(args.data_type, args.root_path, args.data_name))
config = {
'use_cuda': True,
'batchsize': args.batchsize,
'max_len': args.max_len,
'early_stop': args.early_stop,
'root_path': args.root_path,
'aug_prob': args.aug_prob,
'weight_decay': 5e-5,
'model':
{
'mlp': {'dims': [384], 'dropout': 0.2}
},
'emb_dim': args.emb_dim,
'lr': args.lr,
'epoch': args.epoch,
'model_name': args.model_name,
'seed': args.seed,
'save_log_dir': args.save_log_dir,
'save_param_dir': args.save_param_dir,
'param_log_dir': args.param_log_dir,
'tensorboard_dir': args.tensorboard_dir,
'bert_path': args.bert_path,
'data_type': args.data_type,
'data_name': args.data_name,
'eval_mode': args.eval_mode,
'split_level': args.split_level,
'specific_season': args.specific_season,
'train_shuffle': args.train_shuffle
}
if __name__ == '__main__':
st_time = time.time()
metrics_dict_test, metrics_dict_test_in_train = dict(), dict()
if config['split_level'] == 'seasonal':
config['time_str'] = 'season'
config['save_log_dir'] = './seasonal_logs'
config['param_log_dir'] = './seasonal_logs/param'
config['tensorboard_dir'] = './seasonal_logs/tensorlog'
config['data_name'] = config['data_name']+'_seed-'+str(config['seed'])
writer = get_tensorboard_writer(config)
season_list = [i for i in range(1, 5)]
if config['specific_season'] == -1:
for season in season_list:
config['time_index'] = season
season_domain_mapper = { # year mapper
1: 4,
2: 4,
3: 5,
4: 5
}
year_season_domain_mapper = {
1: 15,
2: 16,
3: 17,
4: 18
}
if 'ys' in config['model_name']:
config['domain_num'] = year_season_domain_mapper[season]
else:
config['domain_num'] = season_domain_mapper[season]
best_metric_test, best_metric_test_in_train = Run(config = config, writer = writer).main()
metrics_dict_test[season] = best_metric_test
metrics_dict_test_in_train[season] = best_metric_test_in_train
else:
config['time_index'] = config['specific_season']
best_metric_test, best_metric_test_in_train = Run(config = config, writer = writer).main()
metrics_dict_test[config['specific_season']] = best_metric_test
metrics_dict_test_in_train[config['specific_season']] = best_metric_test_in_train
save_dir = './seasonal_logs/seasonal_log'
else:
print('Error split level!')
exit(1)
# Show training time
ed_time = time.time()
gap_time_sec = int(ed_time-st_time)
m, s = divmod(gap_time_sec, 60)
h, m = divmod(m, 60)
print('training time: {:02d}:{:02d}:{:02d}'.format(h, m, s))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if config['model_name'] == 'bert':
test_save_path = os.path.join(save_dir, config['data_name']+'_test.json')
else:
test_save_path = os.path.join(save_dir, config['model_name']+'_'+config['data_name']+'_test.json')
with open(test_save_path, 'w') as file:
json.dump(metrics_dict_test, file, indent=4, ensure_ascii=False)