-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdeiste.json
84 lines (83 loc) · 2.08 KB
/
deiste.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
{
"dataset_reader": {
"type": "scitail_graph",
"token_indexers": {
"tokens": {
"type": "single_id",
"lowercase_tokens": true
}
},
"max_length": 100,
"tokenizer": {
"start_tokens": ["<START>"],
"end_tokens": ["<END>"]
}
},
"train_data_path":
"./data/nli_datasets/SciTailV1/tsv_format/conceptnet_processed/triples/parsed/scitail_1.0_train_conceptnet_triples.tsv",
"validation_data_path":
"./data/nli_datasets/SciTailV1/tsv_format/conceptnet_processed/triples/parsed/scitail_1.0_dev_conceptnet_triples.tsv",
"model": {
"type": "deiste",
"text_field_embedder": {
"tokens": {
"type": "embedding",
"pretrained_file": "./data/embeddings/glove/glove.840B.300d.txt.gz",
"embedding_dim": 300,
"trainable": true
}
},
"inter_attention": { "type": "cosine" },
"param_dyn_encoder": {
"type": "cnn",
"embedding_dim": 300,
"num_filters": 1,
"ngram_filter_sizes": [3],
"conv_layer_activation": "tanh",
"output_dim": 300,
},
"pos_embedder": {
"type": "embedding",
"num_embeddings": 100,
"embedding_dim": 50,
"trainable": true,
},
"pos_attn_encoder": {
"type": "cnn",
"embedding_dim": 650,
"num_filters": 1,
"ngram_filter_sizes": [3],
"conv_layer_activation": "tanh",
"output_dim": 300,
},
"output_feedforward": {
"input_dim": 1200,
"num_layers": 1,
"hidden_dims": 2,
"activations": "linear"
},
"initializer": [
[".*linear_layers.*weight", { "type": "xavier_normal" }],
[
".*token_embedder_tokens._projection.*weight",
{ "type": "xavier_normal" }
]
]
},
"iterator": {
"type": "bucket",
"sorting_keys": [["premise", "num_tokens"], ["hypothesis", "num_tokens"]],
"batch_size": 50
},
"trainer": {
"num_epochs": 140,
"patience": 20,
"cuda_device": -1,
"grad_clipping": 5.0,
"validation_metric": "+accuracy",
"optimizer": {
"type": "adam",
"lr": 0.001
}
}
}