-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_qlora_ppo.py
569 lines (517 loc) · 19.5 KB
/
train_qlora_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
from dataclasses import dataclass, field
import os
import sys
from typing import Optional, List
import logging
import torch
from accelerate import DistributedDataParallelKwargs
import transformers
try:
from transformers import LlamaTokenizerFast as LlamaTokenizer
print("Using fast tokenizer")
except:
from transformers import LlamaTokenizer
print("Using slow tokenizer")
from transformers import AutoTokenizer
from data_utils.data_utils_ppo import make_rl_data_module
from qlora_utils import (
get_last_checkpoint,
DEFAULT_PAD_TOKEN,
)
from models.ppo_trainer import (
PPOTrainer,
make_models,
)
from models.rl_trainer import AlpacaAccelerator
torch.backends.cuda.matmul.allow_tf32 = True
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
reward_model_name_or_path: Optional[str] = field(default="EleutherAI/pythia-12b")
policy_model_name_or_path: Optional[str] = field(default="EleutherAI/pythia-1.4b")
trust_remote_code: Optional[bool] = field(
default=False,
metadata={
"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."
},
)
tokenizer_model_name: Optional[str] = field(
default="TheBloke/dromedary-65b-lora-HF"
)
reward_model_tokenizer_model_name: Optional[str] = field(
default=None,
metadata={
"help": "Tokenizer model name for the reward model. "
"Defaults to the same as the policy model."
},
)
base_model_mapping: Optional[dict] = field(
default=None,
metadata={
"help": "Mapping from base model names to other base model names. "
"This is useful for loading models trained on different clusters."
},
)
@dataclass
class DataArguments:
dataset_path: str = field(default="tatsu-lab/alpaca_farm")
dataset_name: str = field(default="alpaca_instructions")
eval_dataset_path: str = field(default="tatsu-lab/alpaca_farm")
eval_dataset_name: str = field(default="alpaca_instructions")
train_splits: List[str] = field(default_factory=lambda: ["unlabeled"])
eval_splits: List[str] = field(default_factory=lambda: ["val"])
policy_meta_prompt_pattern: Optional[str] = field(
default=None, metadata={"help": "Which meta prompt pattern to use."}
)
reward_meta_prompt_pattern: Optional[str] = field(
default=None, metadata={"help": "Which meta prompt pattern to use."}
)
principle_collection_path: Optional[str] = field(
default=None, metadata={"help": "Path to the principle collection."}
)
max_principles: Optional[int] = field(
default=None, metadata={"help": "Maximum number of principles to use."}
)
stop_token: Optional[str] = field(
default=None,
metadata={"help": "Token to stop generation with."},
)
@dataclass
class TrainingArguments(transformers.Seq2SeqTrainingArguments):
cache_dir: Optional[str] = field(default=None)
# From AlpacaFarm
truncate_tokens: Optional[List[str]] = field(
default_factory=lambda: None,
metadata={
"help": "Tokens in strings to truncate at first occurrence. "
"This was used in original OAI summarization paper to avoid models returning incomplete sentences. "
},
)
truncate_after: Optional[int] = field(
default=None,
metadata={
"help": "Truncate after this number of tokens. Prevents early truncation."
},
)
penalty_reward_value: float = field(
default=-1.0,
metadata={
"help": "Reward assigned to sequences that are truncated, "
"e.g., due to outputting incomplete sentences for given context window."
},
)
penalize_no_stop_token: bool = field(
default=False,
metadata={
"help": "Whether to penalize sequences that do not contain stop_token."
},
)
length_bonus_score: float = field(
default=0.0,
metadata={
"help": "Add the reward for longer sequences by this amount. "
"This is useful for encouraging longer sequences."
},
)
length_bonus_upper_bound: float = field(
default=1.0,
metadata={"help": "Upper bound on the length bonus. "},
)
policy_model_bits: int = field(
default=4, metadata={"help": "How many bits to use."}
)
reward_model_bits: int = field(
default=4, metadata={"help": "How many bits to use."}
)
fully_initialize_policy: bool = field(
default=False,
metadata={
"help": "Whether to fully initialize the policy model. "
"This is useful for debugging."
},
)
enable_reasoning_principles: bool = field(
default=False,
metadata={
"help": "Whether to enable reasoning principles. "
"This is useful for improving reasoning capabilities."
},
)
enable_redteaming_principles: bool = field(
default=False,
metadata={
"help": "Whether to enable redteaming principles. "
"This is useful for improving harmlessness."
},
)
relative_stop_token_penalty: bool = field(
default=False,
metadata={
"help": "Whether to penalize sequences that do not contain stop_token "
"with a relative penalty based on the original reward."
},
)
clean_tokens_after_eos: bool = field(
default=False,
metadata={
"help": "Whether to clean up tokens after the first occurrence of stop_token."
},
)
total_epochs: int = field(default=10)
rollout_batch_size: int = field(default=512)
step_batch_size: int = field(default=256)
rollout_per_device_batch_size: int = field(default=32)
step_per_device_batch_size: int = field(default=2)
reward_model_per_device_batch_size: int = field(default=None)
noptepochs: int = field(default=2)
vf_coef: float = field(default=0.1)
cliprange: float = field(default=0.2)
cliprange_value: float = field(default=0.2)
gamma: float = field(default=1.0)
lam: float = field(default=1.0)
whiten_rewards: bool = field(default=True)
temperature: float = field(default=1.0)
kl_coef: float = field(default=0.2)
kl_approximator: str = field(default="k1")
target_kl: float = field(default=6.0)
k_beta: float = field(default=0.1)
adaptive_kl: bool = field(default=False)
eval_batches: int = field(
default=sys.maxsize,
metadata={"help": "Maximum number of batches to evaluate on."},
)
init_value_with_reward: bool = field(
default=True,
metadata={"help": "Initialize the value model with the reward model."},
)
save_steps_extra: Optional[str] = field(
default=None,
metadata={
"help": "A list of predetermined checkpoints to save, represented in the format 'no1__no2__no3'. "
"Parse this with str.split('__')."
},
)
query_len: int = field(default=128)
min_token_limit: int = field(default=None)
response_len: int = field(default=384)
model_max_length: int = field(default=1024)
whitening_async_stats: str = field(
default="per_gpu",
metadata={"help": "How to sync statistics for advantage whitening."},
)
# From QLoRA
full_finetune: bool = field(
default=False, metadata={"help": "Finetune the entire model without adapters."}
)
adam8bit: bool = field(default=False, metadata={"help": "Use 8-bit adam."})
report_to: str = field(
default="none",
metadata={"help": "To use wandb or something else for reporting."},
)
resume_dir: str = field(
default=None,
metadata={
"help": "The directory to resume from. If None, will start from scratch."
},
)
output_dir: str = field(
default="./output", metadata={"help": "The output dir for logs and checkpoints"}
)
optim: str = field(
default="paged_adamw_32bit", metadata={"help": "The optimizer to be used"}
)
per_device_train_batch_size: int = field(
default=1,
metadata={
"help": "The training batch size per GPU. Increase for better speed."
},
)
gradient_accumulation_steps: int = field(
default=16,
metadata={
"help": "How many gradients to accumulate before to perform an optimizer step"
},
)
weight_decay: float = field(
default=0.0, metadata={"help": "The L2 weight decay rate of AdamW"}
) # use lora dropout instead for regularization if needed
learning_rate: float = field(default=0.0002, metadata={"help": "The learnign rate"})
remove_unused_columns: bool = field(
default=False,
metadata={"help": "Removed unused columns. Needed to make this codebase work."},
)
max_grad_norm: float = field(
default=0.3,
metadata={
"help": "Gradient clipping max norm. This is tuned and works well for all models tested."
},
)
gradient_checkpointing: bool = field(
default=True,
metadata={"help": "Use gradient checkpointing. You want to use this."},
)
do_train: bool = field(
default=True,
metadata={"help": "To train or not to train, that is the question?"},
)
lr_scheduler_type: str = field(
default="constant",
metadata={
"help": "Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis"
},
)
logging_steps: int = field(
default=10,
metadata={"help": "The frequency of update steps after which to log the loss"},
)
group_by_length: bool = field(
default=True,
metadata={
"help": "Group sequences into batches with same length. Saves memory and speeds up training considerably."
},
)
save_strategy: str = field(
default="steps", metadata={"help": "When to save checkpoints"}
)
save_steps: int = field(default=250, metadata={"help": "How often to save a model"})
save_total_limit: int = field(
default=40,
metadata={
"help": "How many checkpoints to save before the oldest is overwritten"
},
)
resume_from_training: bool = field(
default=False, metadata={"help": "Resume from training"}
)
config_file_name: Optional[str] = field(
default=None,
metadata={
"help": "The name of the config file. If not specified, will use the command line arguments."
},
)
def __post_init__(self):
super().__post_init__()
world_size = int(os.environ.get("WORLD_SIZE", 1))
# Checks on rollout_batch_size only matter for PPO.
assert (
self.rollout_batch_size >= self.rollout_per_device_batch_size * world_size
), (
"rollout_batch_size is smaller than rollout_per_device_batch_size * world_size. "
"Increase the former or decrease the latter to fix this."
)
assert (
self.rollout_batch_size % (self.rollout_per_device_batch_size * world_size)
== 0
), "rollout_batch_size is not a multiple of rollout_per_device_batch_size * world_size. "
assert self.step_batch_size >= self.step_per_device_batch_size * world_size, (
"step_batch_size is smaller than step_per_device_batch_size * world_size. "
"Increase the former or decrease the latter to fix this."
)
assert (
self.step_batch_size % (self.step_per_device_batch_size * world_size) == 0
), "step_batch_size is not a multiple of step_per_device_batch_size * world_size. "
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
logger.warning(
f"Rollout stats:\n"
f"\trollout_batch_size: {self.rollout_batch_size}\n"
f"\trollout_per_device_batch_size: {self.rollout_per_device_batch_size}\n"
f"\tworld_size: {world_size}\n",
)
assert (
self.rollout_batch_size // self.rollout_per_device_batch_size
) % world_size == 0
self.rollout_accumulation_steps = (
self.rollout_batch_size // self.rollout_per_device_batch_size // world_size
)
logger.warning(
f"Step stats:\n"
f"\tstep_batch_size: {self.step_batch_size}\n"
f"\tstep_per_device_batch_size: {self.step_per_device_batch_size}\n"
f"\tworld_size: {world_size}\n",
)
assert (
self.step_batch_size // self.step_per_device_batch_size
) % world_size == 0
self.gradient_accumulation_steps = (
self.step_batch_size // self.step_per_device_batch_size // world_size
)
logger.warning(
f"Accumulation steps:\n"
f"\trollout_accumulation_steps: {self.rollout_accumulation_steps}\n"
f"\tgradient_accumulation_steps: {self.gradient_accumulation_steps}\n"
)
if self.save_steps_extra is not None:
self.save_steps_extra_list = [
int(string) for string in self.save_steps_extra.split("__")
]
else:
self.save_steps_extra_list = []
def set_truncate_token_ids(self, tokenizer: transformers.PreTrainedTokenizer):
"""Convert truncation token to token ids.
This is called in RLTrainer.
"""
truncate_tokens = self.truncate_tokens
if truncate_tokens is None:
truncate_token_ids = None
else:
truncate_token_ids = tokenizer.convert_tokens_to_ids(truncate_tokens)
self.truncate_token_ids = truncate_token_ids
def rank0_print(*args):
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
print(*args)
def train():
hfparser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
try:
# Assumes that the first .yaml file is the config file (if any)
config_file = next(iter(arg for arg in sys.argv if arg.endswith(".yaml")))
except StopIteration:
config_file = None
if config_file:
model_args, data_args, training_args = hfparser.parse_yaml_file(config_file)
else:
(
model_args,
data_args,
training_args,
extra_args,
) = hfparser.parse_args_into_dataclasses(return_remaining_strings=True)
args = argparse.Namespace(
**vars(model_args), **vars(data_args), **vars(training_args)
)
training_args.data_config = data_args
checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir)
if checkpoint_dir is None and args.resume_dir is not None:
checkpoint_dir, _ = get_last_checkpoint(args.resume_dir)
completed_training = False
if completed_training:
rank0_print("Detected that training was already completed!")
if checkpoint_dir is None:
rank0_print("Training from scratch.")
else:
rank0_print("Loading from checkpoint:", checkpoint_dir)
accelerator = AlpacaAccelerator(
log_with=args.report_to,
project_dir=args.logging_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps,
even_batches=True, # Make sure the batch size on each device is the same.
split_batches=False, # Don't break a batch into smaller chunks.
step_scheduler_with_optimizer=False, # Untie optimizer and scheduler step.
# Value model might not use all parameters (e.g., lm-head) in the forward pass.
kwargs_handlers=[
DistributedDataParallelKwargs(
find_unused_parameters=args.ddp_find_unused_parameters,
)
],
)
dict_args = vars(args)
# value should be one of int, float, str, bool, or torch.Tensor
for k in dict_args:
if type(dict_args[k]) not in [int, float, str, bool, torch.Tensor]:
dict_args[k] = str(dict_args[k])
# print(dict_args)
accelerator.init_trackers(
"rl_trainer",
config=dict_args,
init_kwargs={
"wandb": {
"name": args.run_name or args.output_dir.split("/")[-1],
"dir": args.output_dir,
"resume": "allow",
}
},
)
logger.warning(
accelerator.state,
# main_process_only=False,
)
use_llama_base_model = (
"dromedary" in args.tokenizer_model_name.lower()
or "llama" in args.tokenizer_model_name.lower()
)
if use_llama_base_model:
tokenizer_model_name = (
"TheBloke/dromedary-65b-lora-HF" # TODO(zhiqings): hacking
)
TokenizerClass = LlamaTokenizer
else:
tokenizer_model_name = args.tokenizer_model_name
TokenizerClass = AutoTokenizer
# Tokenizer
tokenizer = TokenizerClass.from_pretrained(
tokenizer_model_name,
# cache_dir=args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
truncation_side="right",
)
if use_llama_base_model:
num_new_tokens = 0
if tokenizer._pad_token is None:
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
else:
num_new_tokens = tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN))
reward_tokenizer = tokenizer
reward_num_new_tokens = 0
if (
args.reward_model_tokenizer_model_name is not None
and args.reward_model_tokenizer_model_name != args.tokenizer_model_name
):
reward_tokenizer = AutoTokenizer.from_pretrained(
args.reward_model_tokenizer_model_name,
# cache_dir=args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="left",
truncation_side="right",
)
reward_num_new_tokens = reward_tokenizer.add_special_tokens(
dict(pad_token=DEFAULT_PAD_TOKEN)
)
print("Using different reward tokenizer:", tokenizer, reward_tokenizer)
# Dataset
data_module: dict = make_rl_data_module(
tokenizer=tokenizer, data_args=data_args, training_args=training_args
)
if accelerator.is_main_process:
for i in range(3):
token_ids = data_module["train_dataset"][i]["queries"]
print(tokenizer.decode(token_ids, skip_special_tokens=True))
print("=" * 20)
rank = int(os.environ.get("RANK", 0))
world_size = int(os.environ.get("WORLD_SIZE", 1))
node_id = rank // torch.cuda.device_count()
print(f"Distributed info: rank={rank}, world_size={world_size}, node_id={node_id}")
model_module = make_models(
tokenizer=tokenizer,
reward_tokenizer=reward_tokenizer,
args=args,
accelerator=accelerator,
num_new_tokens=num_new_tokens,
reward_num_new_tokens=reward_num_new_tokens,
resume_from_checkpoint=(
checkpoint_dir if training_args.resume_from_training else None
),
)
trainer = PPOTrainer(
args=training_args,
accelerator=accelerator,
**data_module,
**model_module,
tokenizer=tokenizer,
reward_tokenizer=reward_tokenizer,
)
trainer.train(
resume_training_ckpt=checkpoint_dir
if training_args.resume_from_training
else None
)
if __name__ == "__main__":
train()