-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_attendancelist.py
331 lines (300 loc) · 14.2 KB
/
run_attendancelist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import os
import json
import logging
from collections import Counter
from collections import defaultdict
import networkx as nx
import pandas as pd
from elasticsearch import Elasticsearch
from fuzzy_search import FuzzyPhraseSearcher
import republic.analyser.attendance_lists.parse_delegates as parse_delegates
from republic.elastic.attendancelist_retrieval import make_presentielijsten
from republic.analyser.attendance_lists.pattern_finders import search_provinces, search_presidents, make_groslijst
from republic.model.republic_attendancelist_models import MatchHeer
from republic.analyser.attendance_lists.searchers import make_junksweeper
from republic.helper.similarity_match import FuzzyKeywordGrouper
from republic.helper.utils import reverse_dict
def start_logger(outdir, year):
print(f"logging to {os.path.join(outdir, 'attendancelist.log')}")
logging.basicConfig(filename=os.path.join(outdir, 'attendancelist.log'),
format='%(asctime)s %(message)s', level=logging.INFO)
logging.info(f'{year} Started')
fuzzysearch_config = {
"char_match_threshold": 0.8,
"ngram_threshold": 0.6,
"levenshtein_threshold": 0.5,
"ignorecase": False,
"ngram_size": 3,
"skip_size": 1,
}
def sweep_list(dralist, junksweeper=None):
def get_lscore(r):
return r.score_levenshtein_similarity()
rawres = []
for t in dralist:
# t = rawlist[i]
if len(t) > 1:
rawtext = ' '.join(t)
else:
rawtext = t[0]
rawtext = rawtext.strip()
if rawtext == '':
break
try:
r = junksweeper.find_matches(text=rawtext)
try:
nr = max(r, key=get_lscore)
if nr.score_levenshtein_similarity() < 0.5:
rawres.append(t)
except ValueError:
rawres.append(t)
except ValueError:
pass
return rawres
def list_tograph(inputlist: list):
cl_heren = FuzzyKeywordGrouper(keyword_list=inputlist).find_close_distance_keywords()
g_heren = nx.Graph()
d_nodes = sorted(cl_heren)
for node in d_nodes:
attached_nodes = cl_heren[node]
g_heren.add_node(node)
for nod in attached_nodes:
g_heren.add_edge(node, nod)
return g_heren
# def prepare_found_delegates(framed_gtlm, found_delegates, year):
# framed_gtlm['vs'] = framed_gtlm.gentleobject.apply(lambda x: [e for e in x.variants['general']])
# framed_gtlm['ref_id'] = framed_gtlm.gentleobject.apply(lambda x: x.heerid)
# # framed_gtlm['uuid'] = framed_gtlm.gentleobject.apply(lambda x: x.get_uuid())
# framed_gtlm['name'] = framed_gtlm.gentleobject.apply(lambda x: x.name)
# framed_gtlm['found_in'] = year
# return framed_gtlm
def run(es: Elasticsearch, year=0, outdir='', tofile=True, verbose=True,
source_index: str = 'resolutions'):
# do imports of resources here
# and construct the environment and databases
from republic.data.delegate_database import abbreviated_delegates, found_delegates, read_ekwz
ekwz = read_ekwz()
junksweeper = make_junksweeper(ekwz=ekwz)
transposed_graph = reverse_dict(ekwz)
# keywords = list(abbreviated_delegates.name)
# kwrds = {key: parse_delegates.nm_to_delen(key) for key in keywords}
matchfinder = parse_delegates.FndMatch(year=0, rev_graph=transposed_graph,
searcher=parse_delegates.herensearcher,
junksearcher=junksweeper,
# found_delegates=found_delegates,
df=abbreviated_delegates)
runner = RunAll(es=es,
year=year,
ekwz=ekwz,
abbreviated_delegates=abbreviated_delegates,
found_delegates=found_delegates,
source_index=source_index,
matchfnd=matchfinder)
if verbose:
print("- gathering attendance lists")
if len(runner.searchobs) == 0:
print('no attendance lists found. Quitting')
return
if verbose:
print("- running initial find")
runner.initial_find()
# if verbose:
# print("- running gather_found_delegates")
# runner.gather_found_delegates()
# if verbose:
# print("- running verification")
# runner.verify_matches()
# if verbose:
# print("- running delegates_from_fragments")
runner.delegates_from_fragments()
yout = year_output(year, runner.searchobs)
# print('run_attendaneclist.run - number of records in yout:', len(yout))
if tofile is True:
outname = f'{outdir}/{year}_out.json'
if verbose:
print(f"- saving results to {outname}")
with open(outname, 'w') as fout:
json.dump(fp=fout, obj=yout)
else:
return yout
# if verbose == True:
# print("saving found delegates")
# save_db(runner.found_delegates)
# try:
# Popen()
# except os.error:
# pass # this needs to be replaced with something more elegant
print(f"{year} done")
logging.info(f'{year} Finished')
return 'runner'
class RunAll(object):
def __init__(self, es: Elasticsearch,
year=0,
abbreviated_delegates=None,
kwrds=None,
found_delegates=None,
matchfnd=None,
ekwz=None,
outdir='',
source_index: str = 'full_resolutions'
):
start_logger(outdir, year)
self.year = year
self.searchobs = make_presentielijsten(es=es, year=self.year, index=source_index)
logging.info(f'year: {year}, nr of attendancelists {len(self.searchobs)}')
self.junksweeper = make_junksweeper(ekwz)
self.abbreviated_delegates = abbreviated_delegates
self.found_delegates = found_delegates
self.pm_heren = list(found_delegates['name'].unique())
self.matchfnd = matchfnd
self.herenkeywords = kwrds
self.all_matched = None
self.unmatched = None
self.moregentlemen = None
self.presidents = None
self.framed_gtlm = None
self.fragmentsearcher = None
self.serializable_df = None
def initial_find(self):
print("1. finding presidents")
presidents = search_presidents(presentielijsten=self.searchobs) # update
print(len(presidents), 'found')
self.presidents = [h.strip() for h in presidents]
print("2.find provincial extraordinaris gedeputeerden")
search_provinces(presentielijsten=self.searchobs)
def find_unmarked_text(self, sweep=True):
print("3. finding unmarked text")
unmarked = make_groslijst(presentielijsten=self.searchobs)
c = Counter(unmarked)
tussenkeys = FuzzyKeywordGrouper(keyword_list=list(c.keys()))
dralist = tussenkeys.vars2graph()
if sweep:
unmarked_text = sweep_list(dralist, junksweeper=self.junksweeper)
else:
unmarked_text = dralist
return unmarked_text
def gather_found_delegates(self):
"""try to find delegates in all as yet unmarked text.
All identified delegates are collected in self.all_matched
All unidentified keywords are left in self.unmatched for further processing
"""
deputies = self.find_unmarked_text()
# existing_herensearcher = FuzzyKeywordSearcher(config=fuzzysearch_config)
# existing_herensearcher.index_keywords(self.pm_heren)
self.presidents = [p for p in self.presidents if len(p) > 0]
connected_presidents = FuzzyKeywordGrouper(self.presidents).vars2graph()
print("4. joining presidents and delegates")
found_presidents = parse_delegates.find_delegates(input=connected_presidents,
matchfnd=self.matchfnd,
df=self.abbreviated_delegates,
previously_matched=self.found_delegates,
year=self.year)
new_found_delegates = parse_delegates.find_delegates(input=deputies,
matchfnd=self.matchfnd,
df=self.abbreviated_delegates,
previously_matched=self.found_delegates,
year=self.year)
all_matched = {}
for d in [found_presidents['matched'], new_found_delegates['matched']]:
for key in d:
if key not in all_matched.keys():
all_matched[key] = d[key]
else:
all_matched[key]['variants'].extend(d[key]['variants'])
print(f"total {len(all_matched)} found ")
self.all_matched = all_matched
self.unmatched = new_found_delegates['unmatched']
self.moregentlemen = [MatchHeer(all_matched[d]) for d in all_matched.keys() if
type(d) == int] # strange keys sneak in
# patch up the dataframe for further matching
framed_gtlm = pd.DataFrame(self.moregentlemen)
framed_gtlm.rename(columns={0: 'gentleobject'}, inplace=True)
framed_gtlm['variants'] = framed_gtlm.gentleobject.apply(lambda x: [e.form for e in x.variants['general']])
framed_gtlm['ref_id'] = framed_gtlm.gentleobject.apply(lambda x: x.heerid)
framed_gtlm['uuid'] = framed_gtlm.gentleobject.apply(lambda x: x.get_uuid())
framed_gtlm['name'] = framed_gtlm.gentleobject.apply(lambda x: x.name)
framed_gtlm['found_in'] = self.year
self.framed_gtlm = framed_gtlm
def identify_delegates(self):
"""make search objects from matched delegates that are in self.all_matched"""
kws = defaultdict(list)
matcher = {}
phrases = []
for key in self.all_matched:
kw = self.all_matched[key]
variants = kw.get('variants')
variants = [v[1] for v in variants]
keyword = kw.get('m_kw')
id = kw.get('id')
label = kw.get('name')
if keyword != '':
phrase = {'phrase': keyword, 'label': f"{label}({id})", 'variants': variants}
phrases.append(phrase)
# phrase_model = PhraseModel(phrases=phrases, config=fuzzysearch_config)
# matchsearch.index_phrase_model(phrase_model=phrase_model)
matchsearch = FuzzyPhraseSearcher(phrase_list=phrases, config=fuzzysearch_config)
return matchsearch
def verify_matches(self):
"""We try to turn the delegates that are collected in self.all_matched into text annotations
all delegates have been identified (not necessarily correctly though)
and the dictionary contains a number of variants. These _should_ be a good point of departure"""
all_matched = self.all_matched
print("5. verifying matches")
# for T in self.searchobs:
# ob = self.searchobs[T].matched_text
# delegate_results = Counter()
# for T in self.searchobs:
# searchob = self.searchobs[T]
# result = get_delegates_from_spans(searchob.matched_text)
# try:
# id = result['delegate']['id']
# if id:
# delegate_results.update([id])
# except KeyError:
# pass
# framed_gtlm.to_pickle('sheets/framed_gtlm.pickle')
matchsearch = self.identify_delegates()
print("6. verifying spans")
for T in self.searchobs:
searchob = self.searchobs[T]
try:
mo = parse_delegates.MatchAndSpan(searchob.matched_text,
junksweeper=self.junksweeper,
previously_matched=self.framed_gtlm,
match_search=matchsearch)
except TypeError:
print(T, searchob.matched_text.item)
raise
parse_delegates.delegates2spans(searchob, framed_gtlm=self.framed_gtlm)
print("updating merged delegates database")
merged_deps = pd.merge(left=self.framed_gtlm, right=self.abbreviated_delegates, left_on="ref_id", right_on="id",
how="left")
serializable_df = merged_deps[['ref_id', 'geboortejaar', 'sterfjaar', 'colleges', 'functions',
'period', 'sg', 'was_gedeputeerde', 'p_interval', 'h_life', 'variants', 'name_x',
'found_in', ]]
serializable_df.rename(columns={'name_x': 'name',
'vs': 'variants',
"h_life": "hypothetical_life",
"p_interval": "period_active",
"sg": "active_stgen"}, inplace=True)
self.serializable_df = serializable_df
print("7. finished to attendance lists and found database")
def delegates_from_fragments(self):
self.fragmentsearcher = parse_delegates.DelegatesFromFragments(searchobs=self.searchobs,
year=self.year,
junksweeper=self.junksweeper,
found=self.found_delegates,
df=self.abbreviated_delegates)
self.fragmentsearcher.run()
# print('RunAll.delegates_from_fragments - fragmentsearcher.xgroups:',
# len(self.fragmentsearcher.xgroups))
# print('RunAll.delegates_from_fragments - fragmentsearcher.match_records:',
# len(self.fragmentsearcher.match_records))
parse_delegates.reverse_references(self.fragmentsearcher.xgroups,
self.fragmentsearcher.match_records)
def year_output(year, searchobs):
out = []
for T in searchobs:
ob = searchobs[T]
out.append(ob.to_dict())
return out