-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_training.py
282 lines (255 loc) · 13.1 KB
/
do_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import logging
import os
from itertools import product
from typing import Dict, List
from republic.helper.utils import get_project_dir
from republic.nlp.lm import train_lm
from republic.nlp.lm import make_character_dictionary
from republic.nlp.lm import make_train_test_split
from republic.nlp.ner import prep_training
from republic.nlp.ner import train
from republic.nlp.read import ParaReader, read_para_files_from_dir
ENTITY_TYPES = {
'HOE', 'PER', 'COM', 'ORG', 'LOC', 'DAT', 'RES', 'NAM', 'single_layer',
'FORWARD', 'DEC_START', 'RES_START', 'INCOMP', 'REF_PREV', 'VERB'
}
BEST_MODELS = [
{
'layer': 'COM', 'layer_model': 'COM', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': True, 'use_finetuning': True, 'use_char': True, 'use_fasttext': False,
'use_resolution': False, 'use_gysbert': True
},
{
'layer': 'COM', 'layer_model': 'COM', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': False, 'use_finetuning': True, 'use_char': True, 'use_fasttext': False,
'use_resolution': False, 'use_gysbert': False},
{
'layer': 'DAT', 'layer_model': 'DAT', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': True, 'use_finetuning': False, 'use_char': True, 'use_fasttext': False,
'use_resolution': False, 'use_gysbert': False},
{
'layer': 'HOE', 'layer_model': 'HOE', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': False, 'use_finetuning': True, 'use_char': True, 'use_fasttext': True,
'use_resolution': False, 'use_gysbert': True},
{
'layer': 'LOC', 'layer_model': 'LOC', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': False, 'use_finetuning': False, 'use_char': False, 'use_fasttext': True,
'use_resolution': False, 'use_gysbert': True},
{
'layer': 'NAM', 'layer_model': 'single_layer', 'use_crf': True, 'use_rnn': True,
'reproject_embeddings': True, 'use_context': True, 'use_finetuning': False, 'use_char': True,
'use_fasttext': True, 'use_resolution': False, 'use_gysbert': True},
{
'layer': 'ORG', 'layer_model': 'ORG', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': True,
'use_context': True, 'use_finetuning': True, 'use_char': True, 'use_fasttext': True,
'use_resolution': False, 'use_gysbert': True},
{
'layer': 'PER', 'layer_model': 'PER', 'use_crf': True, 'use_rnn': True, 'reproject_embeddings': False,
'use_context': False, 'use_finetuning': True, 'use_char': True, 'use_fasttext': False,
'use_resolution': False, 'use_gysbert': True},
{
'layer': 'RES', 'layer_model': 'single_layer', 'use_crf': True, 'use_rnn': True,
'reproject_embeddings': True, 'use_context': True, 'use_finetuning': False, 'use_char': False,
'use_fasttext': True, 'use_resolution': False, 'use_gysbert': True}
]
def train_best_layers(best_model_params: List[Dict[str, any]], data_dir: Dict[str, str],
train_size=1.0, mini_batch_size=32, max_epochs=10):
logging.basicConfig(filename='training_best_ner.log', level=logging.DEBUG)
for params in best_model_params:
layer = params['layer_model']
print(f'training layer {layer}')
print('params:', params)
param_string = '-'.join([f"{param}_{params[param]}" for param in params if param.startswith('use_')])
model_name = f"tdb_best_ner-layer_{params['layer']}-layer_model_{params['layer_model']}-{param_string}"
print('model_name:', model_name)
train_entity_tagger(layer_name=layer,
data_dir=data_dir[layer],
train_size=train_size, mini_batch_size=mini_batch_size, max_epochs=max_epochs,
use_crf=params['use_crf'],
use_rnn=params['use_rnn'],
use_context=params['use_context'],
use_char=params['use_char'],
use_fasttext=params['use_fasttext'],
use_gysbert=params['use_gysbert'],
use_resolution=params['use_resolution'],
use_finetuning=params['use_finetuning'],
reproject_embeddings=params['reproject_embeddings'],
model_name=model_name)
def train_layers(layers: List[str], data_dir: Dict[str, str], train_size=1.0, mini_batch_size=32, max_epochs=10):
logging.basicConfig(filename='training_ner.log', level=logging.DEBUG)
bool_options = [
# 'use_crf',
# 'use_rnn',
'reproject_embeddings',
'use_char',
'use_context',
'use_finetuning',
# 'use_resolution',
# 'use_gysbert',
'use_gysbert2',
'use_fasttext'
]
for p in product([True, False], repeat=len(bool_options)):
params = dict(zip(bool_options, p))
params['use_crf'] = True
params['use_rnn'] = True
params['use_resolution'] = False
params['use_gysbert'] = False
if params['use_gysbert2'] is False:
continue
for layer in layers:
print(f'training layer {layer}')
print('params:', params)
param_string = '-'.join([f"{param}_{params[param]}" for param in params])
model_name = f'tdb_ner-layer_{layer}-{param_string}'
print('model_name:', model_name)
train_entity_tagger(layer_name=layer,
data_dir=data_dir[layer],
train_size=train_size, mini_batch_size=mini_batch_size, max_epochs=max_epochs,
use_crf=params['use_crf'],
use_rnn=params['use_rnn'],
use_context=params['use_context'],
use_char=params['use_char'],
use_fasttext=params['use_fasttext'],
use_gysbert=params['use_gysbert'],
use_gysbert2=params['use_gysbert2'],
use_resolution=params['use_resolution'],
use_finetuning=params['use_finetuning'],
reproject_embeddings=params['reproject_embeddings'],
model_name=model_name)
def train_entity_tagger(layer_name: str,
data_dir: str,
train_size: float = 1.0,
hidden_size=256,
model_max_length=512,
learning_rate: float = 0.05,
mini_batch_size: int = 32,
max_epochs: int = 10,
use_crf: bool = False,
use_rnn: bool = False,
reproject_embeddings: bool = False,
use_context: bool = False,
use_finetuning: bool = False,
use_resolution: bool = False,
use_char: bool = False,
use_fasttext: bool = False,
use_gysbert: bool = False,
use_gysbert2: bool = False,
model_name=None):
trainer = prep_training(layer_name,
data_dir,
train_size=train_size,
hidden_size=hidden_size,
use_finetuning=use_finetuning,
use_context=use_context,
use_resolution=use_resolution,
use_char=use_char,
use_gysbert=use_gysbert,
use_gysbert2=use_gysbert2,
use_fasttext=use_fasttext,
use_crf=use_crf,
use_rnn=use_rnn,
reproject_embeddings=reproject_embeddings,
model_max_length=model_max_length)
if trainer is not None:
train(trainer, layer_name, train_size,
learning_rate=learning_rate,
mini_batch_size=mini_batch_size,
max_epochs=max_epochs,
model_name=model_name)
def train_language_model(para_dir: str, corpus_dir: str, is_forward_lm: bool = True,
character_level: bool = True, hidden_size=256,
sequence_length=512, nlayers: int = 1,
mini_batch_size: int = 32, max_epochs: int = 10):
logging.basicConfig(filename='training_lm.log', level=logging.DEBUG)
para_files = read_para_files_from_dir(para_dir)
para_reader = ParaReader(para_files, ignorecase=False)
make_train_test_split(corpus_dir, para_reader=para_reader)
make_character_dictionary(corpus_dir)
train_lm(corpus_dir, is_forward_lm=is_forward_lm, character_level=character_level,
hidden_size=hidden_size, nlayers=nlayers, sequence_length=sequence_length,
mini_batch_size=mini_batch_size, max_epochs=max_epochs)
def parse_args():
argv = sys.argv[1:]
# Define the getopt parameters
try:
opts, args = getopt.getopt(argv, 'g:e:l:s:r:m:t',
['gt_dir=', 'epochs=', 'layers=', 'train_size=',
'learning_rate=', 'mini_batch_size=', 'type='])
train_type = None
gt_base_dir = None
layers = ['single_layer']
train_size = 1.0
learing_rate = 0.05
mini_batch_size = 16
max_epochs = 10
print(opts)
for opt, arg in opts:
if opt in {'-g', '--gt_dir'}:
gt_base_dir = arg
if opt in {'-e', '--epochs'}:
max_epochs = int(arg)
if opt in {'-l', '--layers'}:
layers = arg
print(f'arg layers: #{layers}#')
if ':' in layers:
layers = layers.split(':')
else:
layers = [layers]
print(f'arg layers: #{layers}#')
assert all([layer in ENTITY_TYPES for layer in layers])
if opt in {'-s', '--train_size'}:
train_size = float(arg)
if opt in {'-r', '--learning_rate'}:
learing_rate = float(arg)
if opt in {'-m', '--mini_batch_size'}:
mini_batch_size = int(arg)
if opt in {'-t', '--type'}:
print('option -t passed')
train_type = arg
if train_type == 'ner' and gt_base_dir is None:
raise ValueError('training a NER tagger requires passing a ground truth dir (-g or --gt_dir) '
'inside ./ground_truth')
return layers, gt_base_dir, train_size, learing_rate, mini_batch_size, max_epochs, train_type
except getopt.GetoptError:
# Print something useful
print('usage: do_training.py --type <ner|lm>')
raise
def do_train_lm():
logging.basicConfig(filename='training_lm.log', level=logging.DEBUG)
para_dir = 'data/paragraphs/loghi'
corpus_dir = 'data/embeddings/flair_embeddings/corpus_loghi'
para_files = read_para_files_from_dir(para_dir)
para_reader = ParaReader(para_files, ignorecase=False)
make_train_test_split(corpus_dir, para_reader=para_reader)
make_character_dictionary(corpus_dir)
train_lm(corpus_dir, is_forward_lm=True, character_level=True,
hidden_size=256, nlayers=1, sequence_length=512,
mini_batch_size=32, max_epochs=10)
train_lm(corpus_dir, is_forward_lm=False, character_level=True,
hidden_size=256, nlayers=1, sequence_length=512,
mini_batch_size=32, max_epochs=10)
def get_data_dir(layers: List[str], gt_base_dir: str) -> Dict[str, str]:
project_dir = get_project_dir()
data_dir = {}
for layer_name in layers:
assert os.path.exists(project_dir), f"the project directory {project_dir} doesn't exist"
data_dir[layer_name] = f'{project_dir}/ground_truth/{gt_base_dir}/flair_training/flair_training_{layer_name}'
assert os.path.exists(data_dir[layer_name]), f"the data directory {data_dir[layer_name]} doesn't exist"
return data_dir
def main():
layers, gt_base_dir, train_size, learing_rate, mini_batch_size, max_epochs, train_type = parse_args()
print('train_type:', train_type)
if train_type == 'ner':
data_dir = get_data_dir(layers, gt_base_dir)
print('layers to train:', layers)
train_layers(layers, data_dir, train_size=train_size, mini_batch_size=mini_batch_size, max_epochs=max_epochs)
# train_best_layers(layers, train_size=train_size, mini_batch_size=mini_batch_size, max_epochs=max_epochs)
elif train_type == 'lm':
do_train_lm()
else:
raise ValueError(f"invalid train_type '{train_type}', must be 'ner' or 'lm'.")
if __name__ == "__main__":
import getopt
import sys
main()