-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheigenMatrix.cpp
87 lines (69 loc) · 3.1 KB
/
eigenMatrix.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <iostream>
#include <ctime>
#include <Eigen/Core>
#include <Eigen/Dense>
#define MATRIX_SIZE 50
int main (int argc, char** argv)
{
// Definition of Eigen Matrix
Eigen::Matrix<float, 2, 3> matrix_23;
Eigen::Vector3d v_3d; // Eigen::Matrix<double, 3, 1>
Eigen::Matrix<float, 3, 1> vd_3d;
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero();
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> matrix_dynamic;
Eigen::MatrixXd matrix_x;
// operation for Eigen Matrix
// input
matrix_23 << 1, 2, 3, 4, 5, 6;
// output
std::cout << "matrix 2x3 from 1 to 6: \n" << matrix_23 << std::endl;
// visit member
std::cout << "print matrix 2x3: " << std::endl;
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
{
std::cout << matrix_23(i, j) << "\t";
}
std::cout << std::endl;
}
// matrix multiply
v_3d << 3, 2, 1;
vd_3d << 4, 5, 6;
Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;
std::cout << "[1, 2, 3; 4, 5, 6] * [3, 2, 1] = " << result.transpose() << std::endl;
// Matrix Operation
matrix_33 = Eigen::Matrix3d::Random();
std::cout << "random matrix: \n" << matrix_33 << std::endl;
std::cout << "transpose: \n" << matrix_33.transpose() << std::endl;
std::cout << "sum: " << matrix_33.sum() << std::endl;
std::cout << "trace: " << matrix_33.trace() << std::endl;
std::cout << "times 10: " << 10 * matrix_33 << std::endl;
std::cout << "inverse: \n" << matrix_33.inverse() << std::endl;
std::cout << "det: " << matrix_33.determinant() << std::endl;
// Eigen Value
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);
std::cout << "Eigen values = \n" << eigen_solver.eigenvalues() << std::endl;
std::cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << std::endl;
// Solve the Equation
// matrix_NN * x = v_Nd
Eigen::Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
matrix_NN = matrix_NN * matrix_NN.transpose(); // positive semidefinite matrix
Eigen::Matrix<double, MATRIX_SIZE, 1> v_Nd = Eigen::MatrixXd::Random(MATRIX_SIZE, 1);
clock_t time_stt = clock();
// calculate normal inverse
Eigen::Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;
std::cout << "time of normal inverse is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << std::endl;
std::cout << "x = " << x.transpose() << std::endl;
// QR decomposition
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
std::cout << "time of QR decompositon is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << std::endl;
std::cout << "x = " << x.transpose() << std::endl;
// cholesky decomposition
time_stt = clock();
x = matrix_NN.ldlt().solve(v_Nd);
std::cout << "time of ldlt decomposition is " << 1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC << "ms" << std::endl;
std::cout << "x = " << x.transpose() << std::endl;
return 0;
}