forked from sjackman/stat540-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopGO.R
87 lines (70 loc) · 3.37 KB
/
topGO.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#####################################################
##### # Geneset Enrichment Analysis
##### 1.) Input: Differentially Methylated Island List entitle "myInterestingIslands
##### 2.) Test for enriched GO groups in the list (Fisher and KS)
##### 3.) Convert Island name list to associated genename for input into pathway analysis
##### 4.) Call the genes in a GO group
#####################################################
setwd("/Users/Rachel/Desktop/UBC/540/Stats540/Project/R_objects")
library(IlluminaHumanMethylation450k.db)
library(topGO)
#### ALL ISLANDS
#GO annotations for all Islands on the 450K
GO <- as.list(IlluminaHumanMethylation450kGO2PROBE)
head(GO) #GO<-GO2probe, want probe to GO then Island to GO
probe2GO<-inverseList(GO)
#Summaize GO groups associated with each island (object for topGO function)
Island<-as.data.frame(IlluminaHumanMethylation450kCPGINAME)
#lookup all the GO of each Island and store as list
islGO<-function(x) probe2GO[[Island[x,1]]]
isl<-as.list(1:nrow(Island))
#Island GO data (from probe GO data)
Island2GO<-lapply(isl,islGO)
names(Island2GO)<-Island$cpgiview.ucscname
save(Island2GO, file="island2go.R")
load(file="island2go.R")
### Produce topGO object
###list of all Islands
islandNames<-Island$cpgiview.ucscname
### Top Differentially Methylated Islands from linear mixed-effects model
lme_geneset_apl<-read.table(file="lme_ml.tab")
top_lme<-subset(lme_geneset_apl, abs(t.value)>15) # t value cutoff
myInterestingIslands<-as.character(top_lme$cgi)
islandList <- factor(as.integer(islandNames %in% myInterestingIslands))
names(islandList) <- islandNames
### topGO object
GOdata <- new("topGOdata", ontology = "MF", allGenes = islandList, annot = annFUN.gene2GO, gene2GO = Island2GO)
### TESTS
resultFisher <- runTest(GOdata, algorithm = "classic", statistic = "fisher")
resultFisher
resultKS <- runTest(GOdata, algorithm = "classic", statistic = "ks")
resultKS.elim <- runTest(GOdata, algorithm = "elim", statistic = "ks")
###Summary of top GO groups
allRes_APL <- GenTable(GOdata, classicFisher = resultFisher,
classicKS = resultKS, elimKS = resultKS.elim,orderBy = "elimKS",
ranksOf = "classicFisher", topNodes = 10)
save(allRes_ALL, file="allRes_ALL.R")
write.table(allRes_ALL, file="allRes_ALL.txt", sep="\t")
write.table(allRes_APL, file="allRes_APL.txt", sep="\t")
load(file="allRes_ALL.R")
################################################################
## Genes in top Islands
x <- IlluminaHumanMethylation450kSYMBOL
# Get the probe identifiers that are mapped to a gene symbol
mapped_probes <- mappedkeys(x)
xx <- as.data.frame(x[mapped_probes])
gen.isl<-merge(Island, xx, by.x="cpgiview.Probe_ID", by.y="probe_id")
# 219813 probes have Islands and genes
# dont need probe Id anymore
gen.isl[1]<-NULL
gen.isl<-unique(gen.isl) #21263 Islands associated with 14770 genes
# function to pull out genes associated with top islands
int.genes<-gen.isl[gen.isl$cpgiview.ucscname %in% myInterestingIslands, 2]
lapply(int.genes, write, "intgenes.txt", append=TRUE)
# feed top genes into pathway analysis tool
################################################################
# Genes in top GOs
prbs<-GO[["GO:0046332"]]
gene<-subset(xx,probe_id %in%prbs)
gogene<-unique(gene$symbol)
lapply(gogene, write, "gogenes.txt", append=TRUE)