-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
61 lines (57 loc) · 1.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from functools import wraps
from _thread import start_new_thread
import torch.multiprocessing as mp
def thread_wrapped_func(func):
"""Wrapped func for torch.multiprocessing.Process.
With this wrapper we can use OMP threads in subprocesses
otherwise, OMP_NUM_THREADS=1 is mandatory.
How to use:
@thread_wrapped_func
def func_to_wrap(args ...):
"""
@wraps(func)
def decorated_function(*args, **kwargs):
queue = mp.Queue()
def _queue_result():
exception, trace, res = None, None, None
try:
res = func(*args, **kwargs)
except Exception as e:
exception = e
trace = traceback.format_exc()
queue.put((res, exception, trace))
start_new_thread(_queue_result, ())
result, exception, trace = queue.get()
if exception is None:
return result
else:
assert isinstance(exception, Exception)
raise exception.__class__(trace)
return decorated_function
def check_args(args):
flag = sum([args.only_1st, args.only_2nd])
assert flag <= 1, "no more than one selection from --only_1st and --only_2nd"
if flag == 0:
assert args.dim % 2 == 0, "embedding dimension must be an even number"
if args.async_update:
assert args.mix, "please use --async_update with --mix"
def sum_up_params(model):
""" Count the model parameters """
n = []
if model.fst:
p = model.fst_u_embeddings.weight.cpu().data.numel()
n.append(p)
p = model.fst_state_sum_u.cpu().data.numel()
n.append(p)
if model.snd:
p = model.snd_u_embeddings.weight.cpu().data.numel() * 2
n.append(p)
p = model.snd_state_sum_u.cpu().data.numel() * 2
n.append(p)
n.append(model.lookup_table.cpu().numel())
try:
n.append(model.index_emb_negu.cpu().numel() * 2)
except:
pass
print("#params " + str(sum(n)))