-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
65 lines (59 loc) · 1.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
from functools import wraps
from _thread import start_new_thread
import torch.multiprocessing as mp
def thread_wrapped_func(func):
"""Wrapped func for torch.multiprocessing.Process.
With this wrapper we can use OMP threads in subprocesses
otherwise, OMP_NUM_THREADS=1 is mandatory.
How to use:
@thread_wrapped_func
def func_to_wrap(args ...):
"""
@wraps(func)
def decorated_function(*args, **kwargs):
queue = mp.Queue()
def _queue_result():
exception, trace, res = None, None, None
try:
res = func(*args, **kwargs)
except Exception as e:
exception = e
trace = traceback.format_exc()
queue.put((res, exception, trace))
start_new_thread(_queue_result, ())
result, exception, trace = queue.get()
if exception is None:
return result
else:
assert isinstance(exception, Exception)
raise exception.__class__(trace)
return decorated_function
def shuffle_walks(walks):
seeds = torch.randperm(walks.size()[0])
return walks[seeds]
def sum_up_params(model):
""" Count the model parameters """
n = []
n.append(model.u_embeddings.weight.cpu().data.numel() * 2)
n.append(model.lookup_table.cpu().numel())
n.append(model.index_emb_posu.cpu().numel() * 2)
n.append(model.grad_u.cpu().numel() * 2)
try:
n.append(model.index_emb_negu.cpu().numel() * 2)
except:
pass
try:
n.append(model.state_sum_u.cpu().numel() * 2)
except:
pass
try:
n.append(model.grad_avg.cpu().numel())
except:
pass
try:
n.append(model.context_weight.cpu().numel())
except:
pass
print("#params " + str(sum(n)))
exit()