-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
96 lines (85 loc) · 3.04 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import math
import dgl.function as fn
import torch
import torch.nn as nn
class GraphSAGELayer(nn.Module):
def __init__(self,
in_feats,
out_feats,
activation,
dropout,
bias=True,
use_pp=False,
use_lynorm=True):
super(GraphSAGELayer, self).__init__()
# The input feature size gets doubled as we concatenated the original
# features with the new features.
self.linear = nn.Linear(2 * in_feats, out_feats, bias=bias)
self.activation = activation
self.use_pp = use_pp
if dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = 0.
if use_lynorm:
self.lynorm = nn.LayerNorm(out_feats, elementwise_affine=True)
else:
self.lynorm = lambda x: x
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.linear.weight.size(1))
self.linear.weight.data.uniform_(-stdv, stdv)
if self.linear.bias is not None:
self.linear.bias.data.uniform_(-stdv, stdv)
def forward(self, g, h):
g = g.local_var()
if not self.use_pp or not self.training:
norm = self.get_norm(g)
g.ndata['h'] = h
g.update_all(fn.copy_src(src='h', out='m'),
fn.sum(msg='m', out='h'))
ah = g.ndata.pop('h')
h = self.concat(h, ah, norm)
if self.dropout:
h = self.dropout(h)
h = self.linear(h)
h = self.lynorm(h)
if self.activation:
h = self.activation(h)
return h
def concat(self, h, ah, norm):
ah = ah * norm
h = torch.cat((h, ah), dim=1)
return h
def get_norm(self, g):
norm = 1. / g.in_degrees().float().unsqueeze(1)
norm[torch.isinf(norm)] = 0
norm = norm.to(self.linear.weight.device)
return norm
class GraphSAGE(nn.Module):
def __init__(self,
in_feats,
n_hidden,
n_classes,
n_layers,
activation,
dropout,
use_pp):
super(GraphSAGE, self).__init__()
self.layers = nn.ModuleList()
# input layer
self.layers.append(GraphSAGELayer(in_feats, n_hidden, activation=activation,
dropout=dropout, use_pp=use_pp, use_lynorm=True))
# hidden layers
for i in range(n_layers - 1):
self.layers.append(
GraphSAGELayer(n_hidden, n_hidden, activation=activation, dropout=dropout,
use_pp=False, use_lynorm=True))
# output layer
self.layers.append(GraphSAGELayer(n_hidden, n_classes, activation=None,
dropout=dropout, use_pp=False, use_lynorm=False))
def forward(self, g):
h = g.ndata['feat']
for layer in self.layers:
h = layer(g, h)
return h