-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_gcn.py
219 lines (190 loc) · 7.72 KB
/
cluster_gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import os
import time
import random
import numpy as np
import networkx as nx
import sklearn.preprocessing
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
from dgl.data import register_data_args
from modules import GraphSAGE
from sampler import ClusterIter
from utils import Logger, evaluate, save_log_dir, load_data
def main(args):
torch.manual_seed(args.rnd_seed)
np.random.seed(args.rnd_seed)
random.seed(args.rnd_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
multitask_data = set(['ppi'])
multitask = args.dataset in multitask_data
# load and preprocess dataset
data = load_data(args)
g = data.g
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
labels = g.ndata['label']
train_nid = np.nonzero(train_mask.data.numpy())[0].astype(np.int64)
# Normalize features
if args.normalize:
feats = g.ndata['feat']
train_feats = feats[train_mask]
scaler = sklearn.preprocessing.StandardScaler()
scaler.fit(train_feats.data.numpy())
features = scaler.transform(feats.data.numpy())
g.ndata['feat'] = torch.FloatTensor(features)
in_feats = g.ndata['feat'].shape[1]
n_classes = data.num_classes
n_edges = g.number_of_edges()
n_train_samples = train_mask.int().sum().item()
n_val_samples = val_mask.int().sum().item()
n_test_samples = test_mask.int().sum().item()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
n_train_samples,
n_val_samples,
n_test_samples))
# create GCN model
if args.self_loop and not args.dataset.startswith('reddit'):
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
print("adding self-loop edges")
# metis only support int64 graph
g = g.long()
cluster_iterator = ClusterIter(
args.dataset, g, args.psize, args.batch_size, train_nid, use_pp=args.use_pp)
# set device for dataset tensors
if args.gpu < 0:
cuda = False
else:
cuda = True
torch.cuda.set_device(args.gpu)
val_mask = val_mask.cuda()
test_mask = test_mask.cuda()
g = g.int().to(args.gpu)
print('labels shape:', g.ndata['label'].shape)
print("features shape, ", g.ndata['feat'].shape)
model = GraphSAGE(in_feats,
args.n_hidden,
n_classes,
args.n_layers,
F.relu,
args.dropout,
args.use_pp)
if cuda:
model.cuda()
# logger and so on
log_dir = save_log_dir(args)
logger = Logger(os.path.join(log_dir, 'loggings'))
logger.write(args)
# Loss function
if multitask:
print('Using multi-label loss')
loss_f = nn.BCEWithLogitsLoss()
else:
print('Using multi-class loss')
loss_f = nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
# set train_nids to cuda tensor
if cuda:
train_nid = torch.from_numpy(train_nid).cuda()
print("current memory after model before training",
torch.cuda.memory_allocated(device=train_nid.device) / 1024 / 1024)
start_time = time.time()
best_f1 = -1
for epoch in range(args.n_epochs):
for j, cluster in enumerate(cluster_iterator):
# sync with upper level training graph
if cuda:
cluster = cluster.to(torch.cuda.current_device())
model.train()
# forward
pred = model(cluster)
batch_labels = cluster.ndata['label']
batch_train_mask = cluster.ndata['train_mask']
loss = loss_f(pred[batch_train_mask],
batch_labels[batch_train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# in PPI case, `log_every` is chosen to log one time per epoch.
# Choose your log freq dynamically when you want more info within one epoch
if j % args.log_every == 0:
print(f"epoch:{epoch}/{args.n_epochs}, Iteration {j}/"
f"{len(cluster_iterator)}:training loss", loss.item())
print("current memory:",
torch.cuda.memory_allocated(device=pred.device) / 1024 / 1024)
# evaluate
if epoch % args.val_every == 0:
val_f1_mic, val_f1_mac = evaluate(
model, g, labels, val_mask, multitask)
print(
"Val F1-mic{:.4f}, Val F1-mac{:.4f}". format(val_f1_mic, val_f1_mac))
if val_f1_mic > best_f1:
best_f1 = val_f1_mic
print('new best val f1:', best_f1)
torch.save(model.state_dict(), os.path.join(
log_dir, 'best_model.pkl'))
end_time = time.time()
print(f'training using time {start_time-end_time}')
# test
if args.use_val:
model.load_state_dict(torch.load(os.path.join(
log_dir, 'best_model.pkl')))
test_f1_mic, test_f1_mac = evaluate(
model, g, labels, test_mask, multitask)
print("Test F1-mic{:.4f}, Test F1-mac{:.4f}". format(test_f1_mic, test_f1_mac))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GCN')
register_data_args(parser)
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout probability")
parser.add_argument("--gpu", type=int, default=-1,
help="gpu")
parser.add_argument("--lr", type=float, default=3e-2,
help="learning rate")
parser.add_argument("--n-epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--log-every", type=int, default=100,
help="the frequency to save model")
parser.add_argument("--batch-size", type=int, default=20,
help="batch size")
parser.add_argument("--psize", type=int, default=1500,
help="partition number")
parser.add_argument("--test-batch-size", type=int, default=1000,
help="test batch size")
parser.add_argument("--n-hidden", type=int, default=16,
help="number of hidden gcn units")
parser.add_argument("--n-layers", type=int, default=1,
help="number of hidden gcn layers")
parser.add_argument("--val-every", type=int, default=1,
help="number of epoch of doing inference on validation")
parser.add_argument("--rnd-seed", type=int, default=3,
help="number of epoch of doing inference on validation")
parser.add_argument("--self-loop", action='store_true',
help="graph self-loop (default=False)")
parser.add_argument("--use-pp", action='store_true',
help="whether to use precomputation")
parser.add_argument("--normalize", action='store_true',
help="whether to use normalized feature")
parser.add_argument("--use-val", action='store_true',
help="whether to use validated best model to test")
parser.add_argument("--weight-decay", type=float, default=5e-4,
help="Weight for L2 loss")
parser.add_argument("--note", type=str, default='none',
help="note for log dir")
args = parser.parse_args()
print(args)
main(args)