-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmem_utils.py
66 lines (55 loc) · 1.79 KB
/
mem_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import matplotlib.pyplot as plt
def print_malloc_size(gpu):
'''
Simple print
'''
print(torch.cuda.memory_allocated(device)/1.e9)
def select_freest_device(device_pool):
'''
Selects first device in list device_pool that has enough memory (int mem_req)
'''
curr=0
curr_dev = None
for d in device_pool:
dev_free = torch.cuda.memory_free(d)
if curr<dev_free:
curr_dev = d
curr = int(dev_free)
return curr_dev
class CUDAMemoryTracker():
'''
Class for memory debugging on python side, allows for use as callback
'''
def __init__(self, device):
self.device = device
self.mem_use = []
self.labels = []
self.curr_use = -1
def reset(self):
'''
Reset this memory tracker
'''
self.mem_use = []
self.labels = []
self.curr_use = -1
def add_mem_pt(self, label, verbose=False):
'''
Add a point for tracking memory, with label (may be used by callback, to track memory in 'hard to reach' locations)
'''
mem = torch.cuda.memory_allocated(self.device)/1.e9
self.mem_use.append(mem)
self.labels.append(label)
self.curr_use = mem
if verbose:
print(label, ":", self.curr_use, " GB")
def plot_mem_use(self, rang = None):
'''
Plot memory usage across all defined points. 'rang': tuple(int) defines x-range of plot
'''
if rang is None:
rang = (0,len(self.mem_use))
fig, ax = plt.subplots(figsize=(10,10))
ax.plot(self.mem_use[rang[0]:rang[1]])
ax.set_xticks(np.arange(rang[1]-rang[0]))
ax.set_xticklabels(self.labels[rang[0]:rang[1]], rotation=90)