-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
764 lines (667 loc) · 38.4 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import pandas as pd
import numpy as np
import torch
import networkx as nx
import re
from pandas.core.frame import DataFrame
from os import listdir
from os.path import isfile, join, splitext
from torch.utils.data import dataloader
from torch_geometric.data import Data, Dataset, DataLoader, batch
from torch_geometric.data.in_memory_dataset import InMemoryDataset
from torch_geometric.nn.pool import radius
from torch_geometric.utils import to_networkx, from_networkx, subgraph
from itertools import product, compress
from scipy.spatial import distance_matrix
pd.options.mode.chained_assignment = None
######## Base datasets ########
# C1 Dataset from NSCLC IMC data.
class c1Data(InMemoryDataset):
def __init__(self, root = "/data/IMC_Oct2020/", transform = None, pre_transform = None, pre_filter = None):
super(c1Data, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = "/data/IMC_Oct2020/c1/"
labels = ['DCB', 'NDB']
names = listdir(join(folder, labels[0])) + listdir(join(folder, labels[1]))
return names
@property
def processed_file_names(self):
return ['c1.data']
def download(self):
# Leave this empty?
return []
def process(self):
folder = "/data/IMC_Oct2020/c1/"
labels = ['DCB', 'NDB']
dataset = []
# Data are split into responders (DCB) and nonresponders (NDB)
for label in labels:
folderpath = join(folder, label)
for file in listdir(folderpath):
pointer = pd.read_csv(join(folderpath, file)) # Read in the data
# Construct adjacency matrix
file_neigh = pointer.iloc[:, 48:pointer.shape[1]]
file_cellid = pointer.iloc[:,1] # Cell ID
file1preadjacency = pd.concat([file_cellid, file_neigh], axis = 1) # Join cell IDs to neighbor data
# Arrange into two-columns - cell ID and neighbor
f12 = file1preadjacency.melt(id_vars = "CellId", value_vars = file1preadjacency.columns[1:], var_name = "NeighbourNumber", value_name = "NeighbourId")
f13 = f12[f12.NeighbourId != 0].drop('NeighbourNumber', axis = 1) # Remove all non-neighbor lines
# Construct the distance matrix
pos_list = [row.tolist() for index, row in pointer.loc[:,['X_position', 'Y_position']].iterrows()]
distm = distance_matrix(pos_list, pos_list)
# All other features.
relcols = pointer.columns[2:35] # we need columns 2:34
vertex_tensor = torch.tensor(pointer.loc[:, relcols].values, dtype = torch.double)
edge_tensor = torch.tensor(f13.transpose().values - 1) #names = ("CellId", "NeighbourId"))
pos_tensor = torch.tensor(pointer.loc[:, ['X_position', 'Y_position']].values, dtype = torch.double)
dataset.append(Data(x = vertex_tensor,
edge_index = edge_tensor,
y = torch.tensor([int(label == "DCB")]),
pos = pos_tensor,
dist_mat = distm,
name = splitext(file)[0]))
data, slices = self.collate(dataset)
torch.save((data, slices), self.processed_paths[0])
# C2 Data from NSCLC IMC data.
class c2Data(InMemoryDataset):
def __init__(self, root = "/data/IMC_Oct2020/", transform = None, pre_transform = None, pre_filter = None):
super(c2Data, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = "/data/IMC_Oct2020/c2/"
labels = ['DCB', 'NDB']
names = listdir(join(folder, labels[0])) + listdir(join(folder, labels[1]))
return names
@property
def processed_file_names(self):
return ['c2.data']
def download(self):
# Leave this empty?
return []
def process(self):
folder = "/data/IMC_Oct2020/c2/"
labels = ['DCB', 'NDB']
dataset = []
# Data are split into responders (DCB) and nonresponders (NDB)
for label in labels:
folderpath = join(folder, label)
for file in listdir(folderpath):
pointer = pd.read_csv(join(folderpath, file)) # Read in the data
# Construct adjacency matrix
file_neigh = pointer.iloc[:, 48:pointer.shape[1]]
file_cellid = pointer.iloc[:,1] # Cell ID
file1preadjacency = pd.concat([file_cellid, file_neigh], axis = 1) # Join cell IDs to neighbor data
# Arrange into two-columns - cell ID and neighbor
f12 = file1preadjacency.melt(id_vars = "CellId", value_vars = file1preadjacency.columns[1:], var_name = "NeighbourNumber", value_name = "NeighbourId")
f13 = f12[f12.NeighbourId != 0].drop('NeighbourNumber', axis = 1) # Remove all non-neighbor lines
# Construct the distance matrix
pos_list = [row.tolist() for index, row in pointer.loc[:,['X_position', 'Y_position']].iterrows()]
distm = distance_matrix(pos_list, pos_list)
relcols = pointer.columns[2:35] # we need columns 2:34
vertex_tensor = torch.tensor(pointer.loc[:, relcols].values, dtype = torch.double)
edge_tensor = torch.tensor(f13.transpose().values - 1) #names = ("CellId", "NeighbourId"))
pos_tensor = torch.tensor(pointer.loc[:, ['X_position', 'Y_position']].values, dtype = torch.double)
dataset.append(Data(x = vertex_tensor,
edge_index = edge_tensor,
y = torch.tensor([int(label == "DCB")]),
pos = pos_tensor,
dist_mat = distm,
name = splitext(file)[0]))
data, slices = self.collate(dataset)
torch.save((data, slices), self.processed_paths[0])
# HIV Dataset
class HIVData(InMemoryDataset):
def __init__(self, root = "/data/HIV/", transform = None, pre_transform = None, pre_filter = None):
super(HIVData, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = "/data/HIV/segmented/"
names = listdir(folder)
return names
@property
def processed_file_names(self):
return ['HIV.data']
def download(self):
# Leave this empty?
return []
def process(self):
folder = "/data/HIV/segmented/"
key_table = pd.read_csv('/data/HIV/HIV_key.csv') # Note that T32 is negative, not positive, based on dropbox data, not on annotation key, and T45 is the same.
dataset = []
# Data are split into responders (DCB) and nonresponders (NDB)
for file in listdir(folder):
print(f'pre-reading csv {file}')
pointer = pd.read_csv(join(folder, file)) # Read in the data
print('post-reading csv')
label = re.search('T[0-9]*', file)[0]
status = key_table.loc[key_table.Label == label, 'HIV']
# Construct adjacency matrix
file_neigh = pointer.iloc[:, 128:pointer.shape[1]]
file_cellid = pointer.iloc[:,1] # Cell ID
file1preadjacency = pd.concat([file_cellid, file_neigh], axis = 1) # Join cell IDs to neighbor data
# Arrange into two-columns - cell ID and neighbor
f12 = file1preadjacency.melt(id_vars = "CellId", value_vars = file1preadjacency.columns[1:], var_name = "NeighbourNumber", value_name = "NeighbourId")
f13 = f12[f12.NeighbourId != 0].drop('NeighbourNumber', axis = 1) # Remove all non-neighbor lines
# Construct the distance matrix
pos_list = [row.tolist() for index, row in pointer.loc[:,['X_position', 'Y_position']].iterrows()]
distm = np.exp(-(distance_matrix(pos_list, pos_list) ** 2))
# Get values at each cell
relcols = pointer.columns[2:35] # we need columns 2:34
vertex_tensor = torch.tensor(pointer.loc[:, relcols].values, dtype = torch.double)
edge_tensor = torch.tensor(f13.transpose().values - 1) #names = ("CellId", "NeighbourId"))
pos_tensor = torch.tensor(pointer.loc[:, ['X_position', 'Y_position']].values, dtype = torch.double)
dataset.append(Data(x = vertex_tensor,
edge_index = edge_tensor,
y = torch.tensor(status.values),
pos = pos_tensor,
dist_mat = distm,
name = splitext(file)[0]))
data, slices = self.collate(dataset)
torch.save((data, slices), self.processed_paths[0])
####### Neighbor metric classes ########
# NMC for NSCLC data
class neighbor_metric_class(InMemoryDataset):
def __init__(self, root = "/data/IMC_Oct2020/",
transform = None, pre_transform = None, pre_filter = None,
dataset = 'c2', neighbordef = 'initial',
naive_radius = 25,
knn = 5, knn_max = 50):
self.neighbordef = neighbordef
self.dataset = dataset
if self.neighbordef == 'naive':
self.naive_radius = naive_radius
elif self.neighbordef == 'knn':
self.knn = knn
self.max_distance = knn_max
elif self.neighbordef == 'ellipse':
print("Coming soon to a theater near you.")
else:
raise print("Choose a valid neighbor metric.")
super(neighbor_metric_class, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = f"/data/IMC_Oct2020/{self.dataset}/"
labels = ['DCB', 'NDB']
names = listdir(join(folder, labels[0])) + listdir(join(folder, labels[1]))
return names
@property
def processed_file_names(self):
if self.neighbordef == 'naive':
neighbor_metric = f'naive{self.naive_radius}'
if self.neighbordef == 'knn':
neighbor_metric = f'knn{self.knn}max{self.max_distance}'
return [f'{self.dataset}_{neighbor_metric}.data']
def download(self):
# Leave this empty?
return []
def process(self):
if self.dataset == 'c1':
dataset = c1Data()
elif self.dataset == 'c2':
dataset = c2Data()
new_neighbors = []
print("Generating neighbors...")
if self.neighbordef == 'naive':
for data in dataset:
computer = DataFrame(data.pos.numpy(), columns=['X_position', 'Y_position']) # Read in the data
computer.insert(0, 'CellId', [i for i in range(1, data.pos.shape[0] + 1)])
computer.loc[0:,"neighbors"] = np.nan # Can ignore the value warning.
computer['neighbors'] = computer['neighbors'].astype(object) # So the column accepts list objects
for i in range(0, computer.shape[0]):
x_i = computer.iloc[i, 1]
y_i = computer.iloc[i, 2]
nbd = (computer.X_position - x_i) ** 2 + (computer.Y_position - y_i) ** 2 < self.naive_radius ** 2 # All the neighbors within radius of indexed cell
nbd = list(computer.loc[[i for i, x in enumerate(nbd) if x], ["CellId"]].CellId) # Find indices of those neighbors
computer.at[i, 'neighbors'] = nbd
# Now I have to convert it to a list of pairs.
neighborlist = []
for index, cell in computer.iterrows():
neighborlist.append([[cell.CellId, i] for i in cell.neighbors])
neighborlist = [item for sublist in neighborlist for item in sublist]
neighborlist = np.array([i for i in neighborlist if i[0] != i[1]])
edge_tensor = torch.tensor(neighborlist.transpose() - 1, dtype = torch.long) #names = ("CellId", "NeighbourId"))
edge_attr = torch.tensor([data.dist_mat[i-1,j-1] for i,j in neighborlist], dtype = torch.double)
new_neighbors.append(Data(x = data.x,
y = data.y,
edge_index = edge_tensor,
pos = data.pos,
dist_mat = data.dist_mat,
edge_attr = edge_attr,
name = data.name,
nb_met = 'naive_' + str(self.naive_radius)))
print("Neighbors processed!")
elif self.neighbordef == 'knn':
for data in dataset:
computer = DataFrame(data.pos.np(), columns=['X_position', 'Y_position']) # Read in the data
computer.insert(0, 'CellId', [i for i in range(1, data.pos.shape[0] + 1)])
for index, row in computer.iterrows():
distance = np.sqrt((computer.X_position - row.X_position) ** 2 + (computer.Y_position - row.Y_position) ** 2)
sorts = sorted(enumerate(distance), key = lambda x:x[1])
targets = [sorts [i][0] for i in range(1, self.knn + 1)]
edges = edges + [[index, i] for i in targets] + [[i, index] for i in targets]
# Find unique edges
unique_edges = [list(x) for x in set(tuple(x) for x in edges)]
edge_tensor = torch.tensor(np.array(unique_edges).transpose(), dtype = torch.long)
new_neighbors.append(Data(x = data.x,
y = data.y,
edge_index = edge_tensor,
pos = data.pos,
name = data.name,
nb_met = 'knn'))
print("Neighbors processed!")
data, slices = self.collate(new_neighbors)
torch.save((data, slices), self.processed_paths[0])
# NMC for HIV data
class HIV_neighbor_metric_class(InMemoryDataset):
def __init__(self, root = "/data/HIV/",
transform = None, pre_transform = None, pre_filter = None,
neighbordef = 'initial',
naive_radius = 25,
knn = 5, knn_max = 50):
self.neighbordef = neighbordef
if self.neighbordef == 'naive':
self.naive_radius = naive_radius
elif self.neighbordef == 'knn':
self.knn = knn
self.max_distance = knn_max
elif self.neighbordef == 'ellipse':
print("Coming soon to a theater near you.")
else:
raise print("Choose a valid neighbor metric.")
super(HIV_neighbor_metric_class, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = f"/data/HIV/"
names = listdir(folder)
return names
@property
def processed_file_names(self):
if self.neighbordef == 'naive':
neighbor_metric = f'naive{self.naive_radius}'
if self.neighbordef == 'knn':
neighbor_metric = f'knn{self.knn}max{self.max_distance}'
return [f'HIV_{neighbor_metric}.data']
def download(self):
# Leave this empty?
return []
def process(self):
dataset = HIVData()
new_neighbors = []
if self.neighbordef == 'naive':
counter = 1
for data in dataset:
print(f"Processing sample number {counter}")
computer = DataFrame(data.pos.numpy(), columns=['X_position', 'Y_position']) # Read in the data
computer.insert(0, 'CellId', [i for i in range(1, data.pos.shape[0] + 1)])
computer.loc[0:,"neighbors"] = np.nan # Can ignore the value warning.
computer['neighbors'] = computer['neighbors'].astype(object) # So the column accepts list objects
for i in range(0, computer.shape[0]):
x_i = computer.iloc[i, 1]
y_i = computer.iloc[i, 2]
nbd = (computer.X_position - x_i) ** 2 + (computer.Y_position - y_i) ** 2 < self.naive_radius ** 2 # All the neighbors within radius of indexed cell
nbd = list(computer.loc[[i for i, x in enumerate(nbd) if x], ["CellId"]].CellId) # Find indices of those neighbors
computer.at[i, 'neighbors'] = nbd
# Now I have to convert it to a list of pairs.
neighborlist = []
for index, cell in computer.iterrows():
neighborlist.append([[cell.CellId, i] for i in cell.neighbors])
neighborlist = [item for sublist in neighborlist for item in sublist]
neighborlist = np.array([i for i in neighborlist if i[0] != i[1]])
edge_tensor = torch.tensor(neighborlist.transpose() - 1, dtype = torch.long) #names = ("CellId", "NeighbourId"))
edge_attr = torch.tensor([data.dist_mat[i-1,j-1] for i,j in neighborlist], dtype = torch.double)
new_neighbors.append(Data(x = data.x,
y = data.y,
edge_index = edge_tensor,
pos = data.pos,
dist_mat = data.dist_mat,
edge_attr = edge_attr,
name = data.name,
nb_met = 'naive_' + str(self.naive_radius)))
counter += 1
elif self.neighbordef == 'knn':
for data in dataset:
computer = DataFrame(data.pos.np(), columns=['X_position', 'Y_position']) # Read in the data
computer.insert(0, 'CellId', [i for i in range(1, data.pos.shape[0] + 1)])
for index, row in computer.iterrows():
distance = np.sqrt((computer.X_position - row.X_position) ** 2 + (computer.Y_position - row.Y_position) ** 2)
sorts = sorted(enumerate(distance), key = lambda x:x[1])
targets = [sorts [i][0] for i in range(1, self.knn + 1)]
edges = edges + [[index, i] for i in targets] + [[i, index] for i in targets]
# Find unique edges
unique_edges = [list(x) for x in set(tuple(x) for x in edges)]
edge_tensor = torch.tensor(np.array(unique_edges).transpose(), dtype = torch.long)
new_neighbors.append(Data(x = data.x,
y = data.y,
edge_index = edge_tensor,
pos = data.pos,
name = data.name,
nb_met = 'knn'))
data, slices = self.collate(new_neighbors)
torch.save((data, slices), self.processed_paths[0])
####### Loading classes #########
# Loading class for NSCLC data
class NSCLC_Dataset(InMemoryDataset):
def __init__(self, root = "/data/IMC_Oct2020/",
transform = None, pre_transform = None, pre_filter = None,
dataset = 'c2', neighbordef = 'initial', subgraph = 'windows',
naive_radius = 25,
knn = 5, knn_max = 50,
high_exp_marker = 'CK', exp_radius = 5, exp_depth = 10,
width = 250, window_num = 10, min_cells = 0):
self.dataset = dataset
self.neighbordef = neighbordef
if self.neighbordef == 'naive':
self.naive_radius = naive_radius
elif self.neighbordef == 'knn':
self.knn = knn
self.max_distance = knn_max
elif self.neighbordef == 'ellipse':
print("Coming soon to a theater near you.")
else:
raise print("Choose a valid neighbor metric.")
self.subgraph = subgraph
if subgraph == 'high_exp':
self.marker = high_exp_marker
self.radius = exp_radius
self.depth = exp_depth
elif subgraph == 'windows':
self.window_width = width
self.window_number = window_num
if min_cells == 0:
self.min_cells = (width / 20) ** 2
else:
self.min_cells = min_cells
elif subgraph != 'none':
raise print('Pick a valid subgraph method.')
super(NSCLC_Dataset, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = f"/data/IMC_Oct2020/{self.dataset}/"
labels = ['DCB', 'NDB']
names = listdir(join(folder, labels[0])) + listdir(join(folder, labels[1]))
return names
@property
def processed_file_names(self):
if self.neighbordef == 'naive':
neighbor_metric = f'naive{self.naive_radius}'
if self.neighbordef == 'knn':
neighbor_metric = f'knn{self.knn}max{self.max_distance}'
if self.subgraph == 'high_exp':
subgraph_method = f'{self.marker}r{self.radius}d{self.depth}'
elif self.subgraph == 'windows':
subgraph_method = f'width{self.window_width}n{self.window_number}'
return [f'{self.dataset}_{neighbor_metric}_{subgraph_method}.data']
def download(self):
# Leave this empty?
return []
def process(self):
if self.neighbordef == 'initial':
if self.dataset == 'c1':
dataset = c1Data()
elif self.dataset == 'c2':
dataset = c2Data()
elif self.neighbordef == 'naive':
dataset = neighbor_metric_class(dataset = self.dataset, neighbordef = self.neighbordef,
naive_radius = self.naive_radius)
elif self.neighbordef == 'knn':
dataset = neighbor_metric_class(dataset = self.dataset, neighbordef = self.neighbordef,
knn = self.knn, knn_max = self.max_distance)
print("Generating subgraphs...")
if self.subgraph == 'high_exp':
subgraph_dataset = []
# Set up for finding subgraphs defined by neighborhood breadth
for k in range(0, len(dataset)):
pt_data = dataset[k]
panck_ranks = DataFrame(data = {'panck': pt_data.x[:,6].tolist(), 'index':[i for i in range(0,pt_data.x.shape[0])]}) # col 6 is that of PANCK
nx_data = to_networkx(dataset[k], to_undirected= True)
results = DataFrame(columns = ['Max_node', 'Max_PANCK', 'Neighborhood_nodes'])
# Identify the nodes in each one
for j in range(0, self.depth):
max_node = panck_ranks.index[panck_ranks.panck.argmax()]
max_panck = panck_ranks.panck[max_node]
subgraphlist = [max_node]
for i in range(0, self.radius):
subgraphlist.extend(neighborhood(nx_data, max_node, i + 1))
panck_ranks = panck_ranks.drop(subgraphlist, errors = 'ignore')
# panck_ranks.drop([i for i,x in enumerate(panck_ranks.index) if x in subgraphlist])
addition = {'Max_node':max_node, 'Max_PANCK':max_panck, 'Neighborhood_nodes':subgraphlist}
results = results.append(addition, ignore_index = True)
# Extract the edge and node features for each subgraph
for p in range(0, results.shape[0]):
subgraph_edges = subgraph(results.Neighborhood_nodes[p], pt_data.edge_index)[0]
unique_nodes = np.unique(subgraph_edges[1,:].tolist()).tolist()
for i,x in enumerate(unique_nodes):
for q in range(0, subgraph_edges.shape[1]):
if subgraph_edges[0,q] == x:
subgraph_edges[0,q] = i
if subgraph_edges[1,q] == x:
subgraph_edges[1,q] = i
subgraph_pos = pt_data.pos[results.Neighborhood_nodes[p],:]
subgraph_nodes = pt_data.x[results.Neighborhood_nodes[p],:]
subgraph_dataset.append(Data(x = subgraph_nodes,
y = pt_data.y,
edge_index = subgraph_edges,
pos = subgraph_pos,
name = pt_data.name,
nb_met = pt_data.nb_met,
subgraph = 'Sub_' + str(p)))
print(f"Graph {k} of {len(dataset)} processed")
print("Subgraphs completed!")
elif self.subgraph == 'windows':
subgraph_dataset = []
data_counter = 1
for data in dataset:
sample_dims = [data.pos[:,0].min(), data.pos[:,0].max() - self.window_width,
data.pos[:,1].min(), data.pos[:,1].max() - self.window_width]
# x_min, x_max (adj for window width), y_min, y_max (adj for window width)
counter = 1
window_counter = 1
while counter < self.window_number + 1:
if window_counter > 1000:
print(f'Exceeded 1000 attempts on graph {data_counter}, skipping.')
break
window_counter += 1
window_x = np.random.random() * (sample_dims[1] - sample_dims[0]) + sample_dims[0]
window_y = np.random.random() * (sample_dims[3] - sample_dims[2])+ sample_dims[2]
window_dims = [window_x, window_x + self.window_width,
window_y, window_y + self.window_width]
x_inc = (data.pos[:,0] > window_dims[0]) & (data.pos[:,0] < window_dims[1])
y_inc = (data.pos[:,1] > window_dims[2]) & (data.pos[:,1] < window_dims[3])
mask = x_inc & y_inc
if sum(mask) < self.min_cells:
continue
# Subset
nodes = data.x[mask,:]
pos = data.pos[mask,:]
node_indices = [i for i,x in enumerate(mask) if x]
ndata = to_networkx(data)
nsub = ndata.subgraph(node_indices)
edges = np.array([[i,x] for i,x in nsub.edges]).transpose()
edge_attr = torch.tensor([data.dist_mat[edges[0,i], edges[1,i]] for i in range(0, edges.shape[1])],
dtype = torch.double)
d = dict((x,i) for i,x in enumerate(node_indices))
for q in range(0, edges.shape[1]):
edges[0,q] = d[edges[0,q]]
edges[1,q] = d[edges[1,q]]
subgraph_dataset.append(Data(x = nodes,
y = data.y,
edge_index = torch.tensor(edges, dtype = torch.long),
pos = pos,
edge_attr = edge_attr,
name = data.name,
nb_met = data.nb_met,
win_num = str(counter)))
counter += 1
print(f'Windows for graph {data_counter} of {len(dataset)} completed after {window_counter} windows attempted.')
data_counter += 1
print("Subgraphs completed!")
data, slices = self.collate(subgraph_dataset)
torch.save((data, slices), self.processed_paths[0])
# Loading class for HIV dataset
class HIV_Dataset(InMemoryDataset):
def __init__(self, root = "/data/HIV/",
transform = None, pre_transform = None, pre_filter = None,
neighbordef = 'initial', subgraph = 'none',
naive_radius = 25,
knn = 5, knn_max = 50,
high_exp_marker = 'CK', exp_radius = 5, exp_depth = 10,
width = 250, window_num = 100, min_cells = 0):
self.neighbordef = neighbordef
if self.neighbordef == 'naive':
self.naive_radius = naive_radius
elif self.neighbordef == 'initial':
print("Using initial neighbor definition")
elif self.neighbordef == 'knn':
self.knn = knn
self.max_distance = knn_max
elif self.neighbordef == 'ellipse':
print("Coming soon to a theater near you.")
else:
raise print("Choose a valid neighbor metric.")
self.subgraph = subgraph
if subgraph == 'high_exp':
self.marker = high_exp_marker
self.radius = exp_radius
self.depth = exp_depth
elif subgraph == 'windows':
self.window_width = width
self.window_number = window_num
if min_cells == 0:
self.min_cells = (width / 20) ** 2
else:
self.min_cells = min_cells
elif subgraph != 'none':
raise print('Pick a valid subgraph method.')
super(HIV_Dataset, self).__init__(root, transform, pre_transform, pre_filter)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
folder = f"/data/HIV/"
names = listdir(folder)
return names
@property
def processed_file_names(self):
if self.neighbordef == 'naive':
neighbor_metric = f'naive{self.naive_radius}'
if self.neighbordef == 'knn':
neighbor_metric = f'knn{self.knn}max{self.max_distance}'
if self.neighbordef == 'initial':
neighbor_metric = f'initial'
if self.subgraph == 'high_exp':
subgraph_method = f'{self.marker}r{self.radius}d{self.depth}'
elif self.subgraph == 'windows':
subgraph_method = f'width{self.window_width}n{self.window_number}'
return [f'HIV_{neighbor_metric}_{subgraph_method}.data']
def download(self):
# Leave this empty?
return []
def process(self):
if self.neighbordef == 'initial':
dataset = HIVData()
elif self.neighbordef == 'naive':
dataset = HIV_neighbor_metric_class(neighbordef = self.neighbordef,
naive_radius = self.naive_radius)
elif self.neighbordef == 'knn':
dataset = HIV_neighbor_metric_class(neighbordef = self.neighbordef,
knn = self.knn, knn_max = self.max_distance)
if self.subgraph == 'high_exp':
subgraph_dataset = []
# Set up for finding subgraphs defined by neighborhood breadth
for k in range(0, len(dataset)):
pt_data = dataset[k]
panck_ranks = DataFrame(data = {'panck': pt_data.x[:,6].tolist(), 'index':[i for i in range(0,pt_data.x.shape[0])]}) # col 6 is that of PANCK
nx_data = to_networkx(dataset[k], to_undirected= True)
results = DataFrame(columns = ['Max_node', 'Max_PANCK', 'Neighborhood_nodes'])
# Identify the nodes in each one
for j in range(0, self.depth):
max_node = panck_ranks.index[panck_ranks.panck.argmax()]
max_panck = panck_ranks.panck[max_node]
subgraphlist = [max_node]
for i in range(0, self.radius):
subgraphlist.extend(neighborhood(nx_data, max_node, i + 1))
panck_ranks = panck_ranks.drop(subgraphlist, errors = 'ignore')
# panck_ranks.drop([i for i,x in enumerate(panck_ranks.index) if x in subgraphlist])
addition = {'Max_node':max_node, 'Max_PANCK':max_panck, 'Neighborhood_nodes':subgraphlist}
results = results.append(addition, ignore_index = True)
# Extract the edge and node features for each subgraph
for p in range(0, results.shape[0]):
subgraph_edges = subgraph(results.Neighborhood_nodes[p], pt_data.edge_index)[0]
unique_nodes = np.unique(subgraph_edges[1,:].tolist()).tolist()
for i,x in enumerate(unique_nodes):
for q in range(0, subgraph_edges.shape[1]):
if subgraph_edges[0,q] == x:
subgraph_edges[0,q] = i
if subgraph_edges[1,q] == x:
subgraph_edges[1,q] = i
subgraph_pos = pt_data.pos[results.Neighborhood_nodes[p],:]
subgraph_nodes = pt_data.x[results.Neighborhood_nodes[p],:]
subgraph_dataset.append(Data(x = subgraph_nodes,
y = pt_data.y,
edge_index = subgraph_edges,
pos = subgraph_pos,
name = pt_data.name,
nb_met = pt_data.nb_met,
subgraph = 'Sub_' + str(p)))
print(f"Graph {k} of {len(dataset)} processed")
elif self.subgraph == 'windows':
subgraph_dataset = []
data_counter = 1
for data in dataset:
sample_dims = [data.pos[:,0].min(), data.pos[:,0].max() - self.window_width,
data.pos[:,1].min(), data.pos[:,1].max() - self.window_width]
# x_min, x_max (adj for window width), y_min, y_max (adj for window width)
counter = 1
window_counter = 1
while counter < self.window_number + 1:
if window_counter > 1000:
print(f'Exceeded 1000 attempts on graph {data_counter}, skipping.')
break
window_counter += 1
window_x = np.random.random() * (sample_dims[1] - sample_dims[0]) + sample_dims[0]
window_y = np.random.random() * (sample_dims[3] - sample_dims[2])+ sample_dims[2]
window_dims = [window_x, window_x + self.window_width,
window_y, window_y + self.window_width]
x_inc = (data.pos[:,0] > window_dims[0]) & (data.pos[:,0] < window_dims[1])
y_inc = (data.pos[:,1] > window_dims[2]) & (data.pos[:,1] < window_dims[3])
mask = x_inc & y_inc
if sum(mask) < self.min_cells:
continue
# Subset
nodes = data.x[mask,:]
pos = data.pos[mask,:]
node_indices = [i for i,x in enumerate(mask) if x]
ndata = to_networkx(data)
nsub = ndata.subgraph(node_indices)
edges = np.array([[i,x] for i,x in nsub.edges]).transpose()
edge_attr = torch.tensor([data.dist_mat[edges[0,i], edges[1,i]] for i in range(0, edges.shape[1])],
dtype = torch.double)
d = dict((x,i) for i,x in enumerate(node_indices))
for q in range(0, edges.shape[1]):
edges[0,q] = d[edges[0,q]]
edges[1,q] = d[edges[1,q]]
subgraph_dataset.append(Data(x = nodes,
y = data.y,
edge_index = torch.tensor(edges, dtype = torch.long),
pos = pos,
name = data.name,
edge_attr = edge_attr,
nb_met = data.nb_met,
win_num = str(counter)))
counter += 1
print(f'Windows for graph {data_counter} of {len(dataset)} completed after {window_counter} windows attempted.')
data_counter += 1
data, slices = self.collate(subgraph_dataset)
torch.save((data, slices), self.processed_paths[0])
######## Accessory Functions #########
# Function that finds all neighbors a distance 'n' from node 'node' on graph 'G'
def neighborhood(G, node, n):
path_lengths = nx.single_source_dijkstra_path_length(G, node)
return [node for node, length in path_lengths.items()
if length == n]