-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathOneWire.h
262 lines (212 loc) · 8.5 KB
/
OneWire.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#ifndef OneWire_h
#define OneWire_h
#include <inttypes.h>
#include "application.h"
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
// TRUE and FALSE are defined by default on the Spark
// #define FALSE 0
// #define TRUE 1
class OneWire
{
private:
uint16_t _pin;
/**************Conditional fast pin access for Core and Photon*****************/
#if PLATFORM_ID == 0 // Core
// Fast pin access for STM32F1xx microcontroller
inline void digitalWriteFastLow() {
PIN_MAP[_pin].gpio_peripheral->BRR = PIN_MAP[_pin].gpio_pin;
}
inline void digitalWriteFastHigh() {
PIN_MAP[_pin].gpio_peripheral->BSRR = PIN_MAP[_pin].gpio_pin;
}
inline void pinModeFastOutput() {
GPIO_TypeDef *gpio_port = PIN_MAP[_pin].gpio_peripheral;
uint16_t gpio_pin = PIN_MAP[_pin].gpio_pin;
GPIO_InitTypeDef GPIO_InitStructure;
if (gpio_port == GPIOA )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}
else if (gpio_port == GPIOB )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
}
GPIO_InitStructure.GPIO_Pin = gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
PIN_MAP[_pin].pin_mode = OUTPUT;
GPIO_Init(gpio_port, &GPIO_InitStructure);
}
inline void pinModeFastInput() {
GPIO_TypeDef *gpio_port = PIN_MAP[_pin].gpio_peripheral;
uint16_t gpio_pin = PIN_MAP[_pin].gpio_pin;
GPIO_InitTypeDef GPIO_InitStructure;
if (gpio_port == GPIOA )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
}
else if (gpio_port == GPIOB )
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
}
GPIO_InitStructure.GPIO_Pin = gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
PIN_MAP[_pin].pin_mode = INPUT;
GPIO_Init(gpio_port, &GPIO_InitStructure);
}
inline uint8_t digitalReadFast() {
return GPIO_ReadInputDataBit(PIN_MAP[_pin].gpio_peripheral, PIN_MAP[_pin].gpio_pin);
}
// Assume all other platforms are STM32F2xx until proven otherwise
#elif PLATFORM_ID == 6 || PLATFORM_ID == 8 || PLATFORM_ID == 10 // Photon(P0),P1,Electron
// Fast pin access for STM32F2xx microcontroller
STM32_Pin_Info* PIN_MAP = HAL_Pin_Map(); // Pointer required for highest access speed
inline void digitalWriteFastLow() {
PIN_MAP[_pin].gpio_peripheral->BSRRH = PIN_MAP[_pin].gpio_pin;
}
inline void digitalWriteFastHigh() {
PIN_MAP[_pin].gpio_peripheral->BSRRL = PIN_MAP[_pin].gpio_pin;
}
inline void pinModeFastOutput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, OUTPUT);
}
inline void pinModeFastInput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, INPUT);
}
inline uint8_t digitalReadFast(void){
// This could probably be speed up by digging a little deeper past
// the HAL_GPIO_Read function.
return HAL_GPIO_Read(_pin);
}
#else
inline void digitalWriteFastLow() {
pinResetFast(_pin);
}
inline void digitalWriteFastHigh() {
pinSetFast(_pin);
}
inline void pinModeFastOutput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, OUTPUT);
}
inline void pinModeFastInput(void){
// This could probably be speed up by digging a little deeper past
// the HAL_Pin_Mode function.
HAL_Pin_Mode(_pin, INPUT);
}
inline uint8_t digitalReadFast(void){
return pinReadFast(_pin);
}
#endif
/**************End conditional fast pin access for Core and Photon*************/
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;
#endif
public:
OneWire( uint16_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
uint8_t search(uint8_t *newAddr);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
#endif // OneWire_h