-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHaydt_Report.Rmd
1527 lines (1102 loc) · 51 KB
/
Haydt_Report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Final Landscape Project Report"
author: '3093819'
date: "12/11/2018"
output:
pdf_document: default
html_notebook: default
---
For this project, I created a Spatial Capture-Recapture (SCR) model (named "SCRA_Ind_Time.txt"; within the folders "Code/JAGS"). Sampling design for SCR models include obtaining encounter histories of individual organisms at a specific site. Traps are placed at equal increments apart in an array. The sampling occasion, trap ID, and turtle ID are recorded and the resulting data frame becomes the foundation for most objects created for a SCR model. The model outputs include an activity center per individual, density per site, and number of individuals estimated in site area. The activity centers are centroids of the space an individual used over a sampling session and is similar to a home range center. Activity centers per site represent a realization of a binomial point process (where total number of points in space is fixed).
During the Summer of 2018 I sampled for turtles at 12 sites for 4 days each (sampling occasion = 4 days) by setting out 7 to 14 traps (hoop net traps) along the Chesapeake and Ohio Canal (from Cumberland to the Town Creek Aqueduct).
Objectives for this project included:
1) Develop a SCR model (in the program JAGS) that incorporates heterogeneity of capture probability by sampling day and individual.
2) Obtain activity centers for 2 species (C. picta and C. serpentina; henceforth, CPIC and CSER) from the MCMC output for each model.
3) Analyze dispersion of activity centers for all sites and compare.
4) Analyze dispersion of activity centers for CPIC and CSER and compare.
5) Obtain densities of each species at each site and compare.
## Libraries
```{r, echo = FALSE, message = FALSE}
library(dplyr)
library(tidyr)
library(rjags)
library(parallel)
library(tibble)
library(spatstat)
library(spThin)
library(ggplot2)
library(plotrix)
library(reshape2)
```
I first downloaded my raw data from the summer.
## Load Main Data File for Spatial Capture Recapture Model (Raw data)
```{r}
EDF <- read.csv(file = "Data/EDF.csv", stringsAsFactors = FALSE)
head(EDF)
```
I created preliminary objects to use in my SCR model for each species and site combination. Preliminary objects included a trap location vector indicating distances from most upstream to most downstream trap, trap location matrices recording distance between all combinations of traps per site, and subset raw data for specific species and sites. In addition, trap locations and distances were scaled (divided by 0) to make model computation run smoothly.
## Subsetting Data and Creating Preliminary Objects Per Site and Species
```{r, eval = FALSE}
##Add a new column for integer session values (session = site)
EDF$site_num <- as.integer(as.factor(EDF$site))
summary(EDF)
# Create trap location vector
traplocsA <- c(0,25,50,75,100,125,150,175) # create trap location file
traplocsC <- c(0,25,50,75,100,125,150,175,200,225)
traplocsD <- c(0,25,50,75,100,125,150,175)
traplocsE <- c(0,25,50,75,100,125,150,175,200,225,250,275,300,325)
traplocsF <- c(0,25,50,75,100,125,150)
traplocsG <- c(0,25,50,75,100,125,150)
traplocsJ <- c(0,25,50,75,100,125,150,175,200,225)
traplocsK <- c(0,25,50,75,100,125,150,175,200,225)
traplocsL <- c(0,25,50,75,100,125,150,175)
traplocsM <- c(0,25,50,75,100,125,150,175,200,225,250,275)
traplocsN <- c(0,25,50,75,100,125,150,175,200,225)
traplocsO <- c(0,25,50,75,100,125,150,175,200,225)
#thess are in a vertical format
# Create a Trap Location Matrix (integers = distance apart in m); 1 Matrix per Site
#### MatrixA
matrixA <- matrix(NA, ncol = length(traplocsA), nrow = length(traplocsA))
matrixA[ ,1] <- c(0,25,50,75,100,125,150,175)
matrixA[ ,2] <- c(25,0,25,50,75,100,125,150)
matrixA[ ,3] <- c(50,25,0,25,50,75,100,125)
matrixA[ ,4] <- c(75, 50,25,0,25,50,75,100)
matrixA[ ,5] <- c(100,75, 50,25,0,25,50,75)
matrixA[ ,6] <- c(125,100,75, 50,25,0,25,50)
matrixA[ ,7] <- c(150,125,100,75, 50,25,0,25)
matrixA[ ,8] <- c(175,150,125,100,75, 50,25,0)
matrixA # will need to use coordinates if use all sites in 1 model! or figure out distance b/w sites
#### Matrix C
matrixC <- matrix(NA, ncol = length(traplocsC), nrow = length(traplocsC))
matrixC[ ,1] <- c(0,25,50,75,100,125,150,175,200,225)
matrixC[ ,2] <- c(25,0,25,50,75,100,125,150,175,200)
matrixC[ ,3] <- c(50,25,0,25,50,75,100,125,150,175)
matrixC[ ,4] <- c(75, 50,25,0,25,50,75,100,125,150)
matrixC[ ,5] <- c(100,75,50,25,0,25,50,75,100,125)
matrixC[ ,6] <- c(125,100,75,50,25,0,25,50,75,100)
matrixC[ ,7] <- c(150,125,100,75,50,25,0,25,50,75)
matrixC[ ,8] <- c(175,150,125,100,75,50,25,0,25,50)
matrixC[ , 9] <- c(200,175,150,125,100,75,50,25,0,25)
matrixC[ , 10] <- c(225,200,175,150,125,100,75,50,25,0)
#### Matrix D
matrixD <- matrixA
#### Matrix E
matrixE <- matrix(NA, ncol = length(traplocsE), nrow = length(traplocsE))
matrixE[ ,1] <- c(0,25,50,75,100,125,150,175,200,225,250,275,300,325)
matrixE[ ,2] <- c(25,0,25,50,75,100,125,150,175,200,225,250,275,300)
matrixE[ ,3] <- c(50,25,0,25,50,75,100,125,150,175,200,225,250,275)
matrixE[ ,4] <- c(75, 50,25,0,25,50,75,100,125,150,175,200,225,250)
matrixE[ ,5] <- c(100,75,50,25,0,25,50,75,100,125,150,175,200,225)
matrixE[ ,6] <- c(125,100,75,50,25,0,25,50,75,100,125,150,175,200)
matrixE[ ,7] <- c(150,125,100,75,50,25,0,25,50,75,100,125,150,175)
matrixE[ ,8] <- c(175,150,125,100,75,50,25,0,25,50,75,100,125,150)
matrixE[ , 9] <- c(200,175,150,125,100,75,50,25,0,25,50,75,100,125)
matrixE[ , 10] <- c(225,200,175,150,125,100,75,50,25,0,25,50,75,100)
matrixE[ , 11] <- c(250,225,200,175,150,125,100,75,50,25,0,25,50,75)
matrixE[ , 12] <- c(275,250,225,200,175,150,125,100,75,50,25,0,25,50)
matrixE[ , 13] <- c(300,275,250,225,200,175,150,125,100,75,50,25,0,25)
matrixE[ , 14] <- c(325,300,275,250,225,200,175,150,125,100,75,50,25,0)
#### Matrix F
matrixF <- matrix(NA, ncol = length(traplocsF), nrow = length(traplocsF))
matrixF[ ,1] <- c(0,25,50,75,100,125,150)
matrixF[ ,2] <- c(25,0,25,50,75,100,125)
matrixF[ ,3] <- c(50,25,0,25,50,75,100)
matrixF[ ,4] <- c(75, 50,25,0,25,50,75)
matrixF[ ,5] <- c(100,75, 50,25,0,25,50)
matrixF[ ,6] <- c(125,100,75, 50,25,0,25)
matrixF[ ,7] <- c(150,125,100,75, 50,25,0)
#### Matrix G
matrixG <- matrixF
#### Matrix J
matrixJ <- matrixC
#### Matrix K
matrixK <- matrixC
#### Matrix L
matrixL <- matrixA
#### Matrix M
matrixM <- matrix(NA, ncol = length(traplocsM), nrow = length(traplocsM))
matrixM[ ,1] <- c(0,25,50,75,100,125,150,175,200,225,250,275)
matrixM[ ,2] <- c(25,0,25,50,75,100,125,150,175,200,225,250)
matrixM[ ,3] <- c(50,25,0,25,50,75,100,125,150,175,200,225)
matrixM[ ,4] <- c(75, 50,25,0,25,50,75,100,125,150,175,200)
matrixM[ ,5] <- c(100,75,50,25,0,25,50,75,100,125,150,175)
matrixM[ ,6] <- c(125,100,75,50,25,0,25,50,75,100,125,150)
matrixM[ ,7] <- c(150,125,100,75,50,25,0,25,50,75,100,125)
matrixM[ ,8] <- c(175,150,125,100,75,50,25,0,25,50,75,100)
matrixM[ , 9] <- c(200,175,150,125,100,75,50,25,0,25,50,75)
matrixM[ , 10] <- c(225,200,175,150,125,100,75,50,25,0,25,50)
matrixM[ , 11] <- c(250,225,200,175,150,125,100,75,50,25,0,25)
matrixM[ , 12] <- c(275,250,225,200,175,150,125,100,75,50,25,0)
#### Matrix N
matrixN <- matrixC
#### Matrix O
matrixO <- matrixC
# Trap location and distance matrices / 100
# scale for computational purposes
traplocsA <- traplocsA / 100
traplocsC <- traplocsC / 100
traplocsD <- traplocsD / 100
traplocsE <- traplocsE / 100
traplocsF <- traplocsF / 100
traplocsG <- traplocsG / 100
traplocsJ <- traplocsJ / 100
traplocsK <- traplocsK / 100
traplocsL <- traplocsL / 100
traplocsM <- traplocsM / 100
traplocsN <- traplocsN / 100
traplocsO <- traplocsO / 100
matrixA <- matrixA / 100
matrixC <- matrixC / 100
matrixD <- matrixD / 100
matrixE <- matrixE / 100
matrixF <- matrixF / 100
matrixG <- matrixG / 100
matrixJ <- matrixJ / 100
matrixK <- matrixK / 100
matrixL <- matrixL / 100
matrixM <- matrixM / 100
matrixN <- matrixN / 100
matrixO <- matrixO / 100
## Subset Data for Sites and Species (Density of all turtles per site)
# Site A, CPIC
EDFA <- EDF %>%
filter(site_num == 1 & species == "CPIC")
EDFA
# Site A, CSER
EDFA_CSER <- EDF %>%
filter(site_num == 1 & species == "CSER")
EDFA_CSER[5,4] <- 555 #### Filling in blank ID
# Site C, CPIC
EDFC <- EDF %>%
filter(site_num == 2 & species == "CPIC")
EDFC
# Site C, CSER
EDFC_CSER <- EDF %>%
filter(site_num == 2 & species == "CSER")
EDFC_CSER
# Site D, CPIC
EDFD <- EDF %>%
filter(site_num == 3 & species == "CPIC")
EDFD
# Site D, CSER
EDFD_CSER <- EDF %>%
filter(site_num == 3 & species == "CSER")
EDFD_CSER ###### 2 individuals
# Site E, CPIC
EDFE <- EDF %>%
filter(site_num == 4 & species == "CPIC")
EDFE
# Site E, CSER
EDFE_CSER <- EDF %>%
filter(site_num == 4 & species == "CSER")
EDFE_CSER
# Site F, CPIC
EDFF <- EDF %>%
filter(site_num == 5 & species == "CPIC")
EDFF
# Site F, CSER
EDFF_CSER <- EDF %>%
filter(site_num == 5 & species == "CSER")
EDFF_CSER
# Site G, CPIC
EDFG <- EDF %>%
filter(site_num == 6 & species == "CPIC")
EDFG
# Site G, CSER
EDFG_CSER <- EDF %>%
filter(site_num == 6 & species == "CSER")
EDFG_CSER
# Site J, CPIC
EDFJ <- EDF %>%
filter(site_num == 9 & species == "CPIC")
EDFJ
# Site J, CSER
EDFJ_CSER <- EDF %>%
filter(site_num == 9 & species == "CSER")
EDFJ_CSER
# Site K, CPIC
EDFK <- EDF %>%
filter(site_num == 10 & species == "CPIC")
EDFK
# Site K, CSER
EDFK_CSER <- EDF %>%
filter(site_num == 10 & species == "CSER")
EDFK_CSER #### Only 2 individuals
# Site L, CPIC
EDFL <- EDF %>%
filter(site_num == 11 & species == "CPIC")
EDFL
# Site L, CSER
EDFL_CSER <- EDF %>%
filter(site_num == 11 & species == "CSER")
EDFL_CSER #### Only 1 individual
# Site M, CPIC
EDFM <- EDF %>%
filter(site_num == 12 & species == "CPIC")
EDFM
# Site M, CSER
EDFM_CSER <- EDF %>%
filter(site_num == 12 & species == "CSER")
EDFM_CSER
# Site N, CPIC
EDFN <- EDF %>%
filter(site_num == 13 & species == "CPIC")
EDFN
# Site N, CSER
EDFN_CSER <- EDF %>%
filter(site_num == 13 & species == "CSER")
EDFN_CSER
# Site O, CPIC
EDFO <- EDF %>%
filter(site_num == 14 & species == "CPIC")
EDFO
# Site O, CSER
EDFO_CSER <- EDF %>%
filter(site_num == 14 & species == "CSER")
EDFO_CSER
```
#Model Information:
I first created a null model (without heterogeneity in capture probability by day or individual) and evolved the model until it is what is shown below.
alpha0 = set prob. of baseline encounter
logit = constraining prob between 0 and 1
alpha1 = set probability of encounter at 1 unit distance away from alpha0
sigma = scale parameter of a half-normal
For each individual for number of augments (M), find z[i] - likelihood that augment is part of sampled population, activity center (acs assumed to be uniformally distributed) , and for each trap.
Calculate distance of each individual i from trap j using distance equation.
Estimate parameters affecting the observed number of times caught per trap reflecting a binomial distribution with probability of encounter changing by individual and day.
Estimate encounter probability parameters including likelihood an individual is part of population.
# Calculate population size by summing all 1s associated with individuals within the population that were sampled (prob. of z = 1)
# Calculate density by dividing population size by state space size (trapping length + buffers).
#### THE MODEL
```{r, eval = FALSE}
#### Model with individual heterogeneity in capture probability ####
cat ("
model {
# alpha1 ~ dgamma(0.1, 0.1) # consider appropriate prior
# alpha1 ~ dt(0, 1 / (5^2), 1)I(0, ) ## implies half-cauchy with scale of 5
alpha1 ~ dnorm(0, 1 / (25^2))I(0, ) ## half normal
sigma <- pow(1 / (2*alpha1), 0.5) # sd of half normal
psi ~ dunif(0, 1)
sigma_ind ~ dt(0, 1 / (25^2), 1)I(0, ) ## implies half-cauchy with scale of 25
for(i in 1:M) {
for(k in 1:K) {
eta[i,k] ~ dnorm(0, 1 / (sigma_ind * sigma_ind))
}
}
for(k in 1:K) {
alpha0[k] ~ dnorm(0, 0.1)
}
for(i in 1:M) {
z[i] ~ dbern(psi)
s[i] ~ dunif(xlimA[1], xlimA[2])
for(j in 1:n_traps) {
d[i,j] <- abs(s[i] - traplocsA[j])
for(k in 1:K) {
logit(p0[i,j,k]) <- alpha0[k] + eta[i,k]
y[i,j, k] ~ dbern(p[i,j,k])
p[i,j, k] <- z[i]*p0[i,j,k]*exp(- alpha1 * d[i,j] * d[i,j])
}
}
}
# Derived parameters
N <- sum(z[ ])
density <- N / (xlimA[2] - xlimA[1]) # divided distances by 100 so calculates turtles per 100 m of canal
}
", file = "Code/JAGS/SCR_Ind_Time.txt")
testing <- TRUE
if(testing) {
na = 500
ni = 500
nt = 1
nc = 3
} else {
na = 100000
ni = 600000
nt = 60
nc = 4
}
```
## Creating Objects Specific to SCR Model
Objects Created Per Site and Species Found in "Site_Species_Models.R"
# Example: Running model on one set of objects for CPIC Site A
```{r, eval = FALSE}
jags_data <- list(y = EM_arrayA, traplocsA = traplocsA, K=K, M=M_A, xlimA=xlimA, n_traps = n_trapsA)
inits <- function() {
list(alpha0=rnorm(4,-2,.4), alpha1=runif(1,1,2), s=as.numeric(sstA[]), z=z_A, psi = runif(1))
}
parameters <- c("alpha0", "alpha1", "sigma", "N", "density", "s", "sigma_ind", "psi", "z")
# run in parallel explicitly
cl <- makeCluster(nc) # Request # cores
clusterExport(cl, c("jags_data", "inits", "parameters", "z_A", "sstA", "ni", "na", "nt")) # Make these available
clusterSetRNGStream(cl = cl, 54354354)
system.time({ # no status bar (% complete) when run in parallel
out_1_cpic <- clusterEvalQ(cl, {
library(rjags)
jm <- jags.model("Code/JAGS/SCR_Ind_Time.txt", jags_data, inits, n.adapt = na, n.chains = 1) # Compile model and run burnin
out_1_cpic <- coda.samples(jm, parameters, n.iter = ni, thin = nt) # Sample from posterior distribution
return(as.mcmc(out_1_cpic))
})
}) #
stopCluster(cl)
cpic_A_mcmc <- mcmc.list(out_1_cpic)
save(cpic_A_mcmc, file = "Results/JAGS/cpic_A_mcmc.RData")
Run Model On Objects for each Site - Species Combination.
parameters, initial values, iterations - adapt, iterations - saved each mcmc file under folder "Results/JAGS" "JAGS"
```
#SEE REST OF CODE IN "Site_Species_Model.R" (Too large for Markdown to knit)
## Obtaining List of Activity Centers and Density Per Site and Species
As MCMC chains were run in parallel processing, I first combined rows of the resulting 3 list objects into one result object. I then obtained activity centers per individual and densities per site from each complete MCMC object after averaging the results from all chains.
```{r, eval = FALSE}
####### Site A, CPIC ########
# Load MCMC Data
load("Results/JAGS/cpic_A_mcmc.RData")
# combine chains
df_mcmc_cpic_A <- as.data.frame(cpic_A_mcmc[[1]])
for(i in 2:length(cpic_A_mcmc)) {
df_mcmc_cpic_A <- bind_rows(df_mcmc_cpic_A, as.data.frame(cpic_A_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_A <- df_mcmc_cpic_A %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_A <- centers_cpic_A[1:36, ]
hist(centers_cpic_A[]) # activity centers for individuals caught at least once
#### Obtaining Density and N For Site A and CPICS from MCMC Output ####
densities_cpic_A <- df_mcmc_cpic_A$density[501:1000] #densities per iteration after burnin
stderror_cpic_A <- std.error(as.vector(densities_cpic_A))
mean_density_cpic_A <- mean(densities_cpic_A) # Mean # turtles per 100 meters
estimated_N_cpic_A <- df_mcmc_cpic_A$N[501:1000]
mean_est_N_cpic_A <- mean(estimated_N_cpic_A) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_A/mean_density_cpic_A
###################################################
############ Site A, CSER ##############
load("Results/JAGS/cser_A_mcmc.RData")
# combine chains
df_mcmc_cser_A <- as.data.frame(cser_A_mcmc[[1]])
for(i in 2:length(cser_A_mcmc)) {
df_mcmc_cser_A <- bind_rows(df_mcmc_cser_A, as.data.frame(cser_A_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_A <- df_mcmc_cser_A %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_A <- centers_cser_A[1:n_indA, ]
hist(centers_cser_A) # activity centers for individuals caught at least once
#### Obtaining Density and N For Site A and CSER from MCMC Output ####
densities_cser_A <- df_mcmc_cser_A$density[501:1000] #densities per iteration after burnin
stderror_cser_A <- std.error(as.vector(densities_cser_A))
mean_density_cser_A <- mean(densities_cser_A) # Mean # turtles per 100 meters
estimated_N_cser_A <- df_mcmc_cser_A$N[501:1000]
mean_est_N_cser_A <- mean(estimated_N_cser_A) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_A/mean_density_cser_A
####### Site C, CPIC ########
# Load MCMC Data
load("Results/JAGS/cpic_C_mcmc.RData")
# combine chains
df_mcmc_cpic_C <- as.data.frame(cpic_C_mcmc[[1]])
for(i in 2:length(cpic_C_mcmc)) {
df_mcmc_cpic_C <- bind_rows(df_mcmc_cpic_C, as.data.frame(cpic_C_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_C <- df_mcmc_cpic_C %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_C <- centers_cpic_C[1:n_indC, ]
hist(centers_cpic_C) # activity centers for individuals caught at least once
# hist(centers)
#### Obtaining Density and N
densities_cpic_C <- df_mcmc_cpic_C$density[501:1000] #densities per iteration after burnin
stderror_cpic_C <- std.error(as.vector(densities_cpic_C))
mean_density_cpic_C <- mean(densities_cpic_C) # Mean # turtles per 100 meters
estimated_N_cpic_C <- df_mcmc_cpic_C$N[501:1000]
mean_est_N_cpic_C <- mean(estimated_N_cpic_C) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_C/mean_density_cpic_C
####### Site C, CSER ########
# Load MCMC Data
load("Results/JAGS/cser_C_mcmc.RData")
# combine chains
df_mcmc_cser_C <- as.data.frame(cser_C_mcmc[[1]])
for(i in 2:length(cser_C_mcmc)) {
df_mcmc_cser_C <- bind_rows(df_mcmc_cser_C, as.data.frame(cser_C_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_C <- df_mcmc_cser_C %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_C <- centers_cser_C[1:n_indC, ]
hist(centers_cser_C) # activity centers for individuals caught at least once
# hist(centers)
#### Obtaining Density For Site 1 and CPICS from MCMC Output ####
densities_cser_C <- df_mcmc_cser_C$density[501:1000] #densities per iteration after burnin
stderror_cser_C <- std.error(as.vector(densities_cser_C))
mean_density_cser_C <- mean(densities_cser_C) # Mean # turtles per 100 meters
estimated_N_cser_C <- df_mcmc_cser_C$N[501:1000]
mean_est_N_cser_C <- mean(estimated_N_cser_C) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_C/mean_density_cser_C
####### Site D, CPIC ########
load("Results/JAGS/cpic_D_mcmc.RData")
# combine chains
df_mcmc_cpic_D <- as.data.frame(cpic_D_mcmc[[1]])
for(i in 2:length(cpic_D_mcmc)) {
df_mcmc_cpic_D <- bind_rows(df_mcmc_cpic_D, as.data.frame(cpic_D_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_D <- df_mcmc_cpic_D %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_D <- centers_cpic_D[1:n_indD, ]
hist(centers_cpic_D) # activity centers for individuals caught at least once
# hist(centers)
#### Obtaining Density For Site 1 and CPICS from MCMC Output ####
densities_cpic_D <- df_mcmc_cpic_D$density[501:1000] #densities per iteration after burnin
stderror_cpic_D <- std.error(as.vector(densities_cpic_D))
mean_density_cpic_D <- mean(densities_cpic_D) # Mean # turtles per 100 meters
estimated_N_cpic_D <- df_mcmc_cpic_D$N[501:1000]
mean_est_N_cpic_D <- mean(estimated_N_cpic_D) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_D/mean_density_cpic_D
####### Site E, CPIC ########
load("Results/JAGS/cpic_E_mcmc.RData")
# combine chains
df_mcmc_cpic_E <- as.data.frame(cpic_E_mcmc[[1]])
for(i in 2:length(cpic_E_mcmc)) {
df_mcmc_cpic_E <- bind_rows(df_mcmc_cpic_E, as.data.frame(cpic_E_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_E <- df_mcmc_cpic_E %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_E <- centers_cpic_E[1:n_indE, ]
hist(centers_cpic_E) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_E <- df_mcmc_cpic_E$density[501:1000] #densities per iteration after burnin
stderror_cpic_E <- std.error(as.vector(densities_cpic_E))
mean_density_cpic_E <- mean(densities_cpic_E) # Mean # turtles per 100 meters
estimated_N_cpic_E <- df_mcmc_cpic_E$N[501:1000]
mean_est_N_cpic_E <- mean(estimated_N_cpic_E) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_E/mean_density_cpic_E
####### Site E, CSER ########
load("Results/JAGS/cser_E_mcmc.RData")
# combine chains
df_mcmc_cser_E <- as.data.frame(cser_E_mcmc[[1]])
for(i in 2:length(cser_E_mcmc)) {
df_mcmc_cser_E <- bind_rows(df_mcmc_cser_E, as.data.frame(cser_E_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_E <- df_mcmc_cser_E %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_E <- centers_cser_E[1:n_indE, ]
hist(centers_cser_E) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cser_E <- df_mcmc_cser_E$density[501:1000] #densities per iteration after burnin
stderror_cser_E <- std.error(as.vector(densities_cser_E))
mean_density_cser_E <- mean(densities_cser_E) # Mean # turtles per 100 meters
estimated_N_cser_E <- df_mcmc_cser_E$N[501:1000]
mean_est_N_cser_E <- mean(estimated_N_cser_E) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_E/mean_density_cser_E
####### Site F, CSER ########
load("Results/JAGS/cser_F_mcmc.RData")
# combine chains
df_mcmc_cser_F <- as.data.frame(cser_F_mcmc[[1]])
for(i in 2:length(cser_F_mcmc)) {
df_mcmc_cser_F <- bind_rows(df_mcmc_cser_F, as.data.frame(cser_F_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_F <- df_mcmc_cser_F %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_F <- centers_cser_F[1:n_indF, ]
hist(centers_cser_F) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cser_F <- df_mcmc_cser_F$density[501:1000] #densities per iteration after burnin
stderror_cser_F <- std.error(as.vector(densities_cser_F))
mean_density_cser_F <- mean(densities_cser_F) # Mean # turtles per 100 meters
estimated_N_cser_F <- df_mcmc_cser_F$N[501:1000]
mean_est_N_cser_F <- mean(estimated_N_cser_F) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_F/mean_density_cser_F
####### Site F, CPIC ########
load("Results/JAGS/cpic_F_mcmc.RData")
# combine chains
df_mcmc_cpic_F <- as.data.frame(cpic_F_mcmc[[1]])
for(i in 2:length(cpic_F_mcmc)) {
df_mcmc_cpic_F <- bind_rows(df_mcmc_cpic_F, as.data.frame(cpic_F_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_F <- df_mcmc_cpic_F %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_F <- centers_cpic_F[1:n_indF, ]
hist(centers_cpic_F) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_F <- df_mcmc_cpic_F$density[501:1000] #densities per iteration after burnin
stderror_cpic_F <- std.error(as.vector(densities_cpic_F))
mean_density_cpic_F <- mean(densities_cpic_F) # Mean # turtles per 100 meters
estimated_N_cpic_F <- df_mcmc_cpic_F$N[501:1000]
mean_est_N_cpic_F <- mean(estimated_N_cpic_F) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_F/mean_density_cpic_F
####### Site G, CPIC ########
load("Results/JAGS/cpic_G_mcmc.RData")
# combine chains
df_mcmc_cpic_G <- as.data.frame(cpic_G_mcmc[[1]])
for(i in 2:length(cpic_G_mcmc)) {
df_mcmc_cpic_G <- bind_rows(df_mcmc_cpic_G, as.data.frame(cpic_G_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_G <- df_mcmc_cpic_G %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_G <- centers_cpic_G[1:n_indG, ]
hist(centers_cpic_G) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_G <- df_mcmc_cpic_G$density[501:1000] #densities per iteration after burnin
stderror_cpic_G <- std.error(as.vector(densities_cpic_G))
mean_density_cpic_G <- mean(densities_cpic_G) # Mean # turtles per 100 meters
estimated_N_cpic_G <- df_mcmc_cpic_G$N[501:1000]
mean_est_N_cpic_G <- mean(estimated_N_cpic_G) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_G/mean_density_cpic_G
####### Site G, CSER ########
load("Results/JAGS/cser_G_mcmc.RData")
# combine chains
df_mcmc_cser_G <- as.data.frame(cser_G_mcmc[[1]])
for(i in 2:length(cser_G_mcmc)) {
df_mcmc_cser_G <- bind_rows(df_mcmc_cser_G, as.data.frame(cser_G_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_G <- df_mcmc_cser_G %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_G <- centers_cser_G[1:n_indG, ]
hist(centers_cser_G) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cser_G <- df_mcmc_cser_G$density[501:1000] #densities per iteration after burnin
stderror_cser_G <- std.error(as.vector(densities_cser_G))
mean_density_cser_G <- mean(densities_cser_G) # Mean # turtles per 100 meters
estimated_N_cser_G <- df_mcmc_cser_G$N[501:1000]
mean_est_N_cser_G <- mean(estimated_N_cser_G) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_G/mean_density_cser_G
####### Site J, CPIC ########
load("Results/JAGS/cpic_J_mcmc.RData")
# combine chains
df_mcmc_cpic_J <- as.data.frame(cpic_J_mcmc[[1]])
for(i in 2:length(cpic_J_mcmc)) {
df_mcmc_cpic_J <- bind_rows(df_mcmc_cpic_J, as.data.frame(cpic_J_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_J <- df_mcmc_cpic_J %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_J <- centers_cpic_J[1:n_indJ, ]
hist(centers_cpic_J) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_J <- df_mcmc_cpic_J$density[501:1000] #densities per iteration after burnin
stderror_cpic_J <- std.error(as.vector(densities_cpic_J))
mean_density_cpic_J <- mean(densities_cpic_J) # Mean # turtles per 100 meters
estimated_N_cpic_J <- df_mcmc_cpic_J$N[501:1000]
mean_est_N_cpic_J <- mean(estimated_N_cpic_J) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_J/mean_density_cpic_J
####### Site J, CSER ########
load("Results/JAGS/cser_J_mcmc.RData")
# combine chains
df_mcmc_cser_J <- as.data.frame(cser_J_mcmc[[1]])
for(i in 2:length(cser_J_mcmc)) {
df_mcmc_cser_J <- bind_rows(df_mcmc_cser_J, as.data.frame(cser_J_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_J <- df_mcmc_cser_J %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_J <- centers_cser_J[1:n_indJ, ]
hist(centers_cser_J) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cser_J <- df_mcmc_cser_J$density[501:1000] #densities per iteration after burnin
stderror_cser_J <- std.error(as.vector(densities_cser_J))
mean_density_cser_J <- mean(densities_cser_J) # Mean # turtles per 100 meters
estimated_N_cser_J <- df_mcmc_cser_J$N[501:1000]
mean_est_N_cser_J <- mean(estimated_N_cser_J) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_J/mean_density_cser_J
####### Site K, CPIC ########
load("Results/JAGS/cpic_K_mcmc.RData")
# combine chains
df_mcmc_cpic_K <- as.data.frame(cpic_K_mcmc[[1]])
for(i in 2:length(cpic_K_mcmc)) {
df_mcmc_cpic_K <- bind_rows(df_mcmc_cpic_K, as.data.frame(cpic_K_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_K <- df_mcmc_cpic_K %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_K <- centers_cpic_K[1:n_indK, ]
hist(centers_cpic_K) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_K <- df_mcmc_cpic_K$density[501:1000] #densities per iteration after burnin
stderror_cpic_K <- std.error(as.vector(densities_cpic_K))
mean_density_cpic_K <- mean(densities_cpic_K) # Mean # turtles per 100 meters
estimated_N_cpic_K <- df_mcmc_cpic_K$N[501:1000]
mean_est_N_cpic_K <- mean(estimated_N_cpic_K) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_K/mean_density_cpic_K
####### Site L, CPIC ########
load("Results/JAGS/cpic_L_mcmc.RData")
# combine chains
df_mcmc_cpic_L <- as.data.frame(cpic_L_mcmc[[1]])
for(i in 2:length(cpic_L_mcmc)) {
df_mcmc_cpic_L <- bind_rows(df_mcmc_cpic_L, as.data.frame(cpic_L_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_L <- df_mcmc_cpic_L %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_L <- centers_cpic_L[1:n_indL, ]
hist(centers_cpic_L) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_L <- df_mcmc_cpic_L$density[501:1000] #densities per iteration after burnin
stderror_cpic_L <- std.error(as.vector(densities_cpic_L))
mean_density_cpic_L <- mean(densities_cpic_L) # Mean # turtles per 100 meters
estimated_N_cpic_L <- df_mcmc_cpic_L$N[501:1000]
mean_est_N_cpic_L <- mean(estimated_N_cpic_L) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_L/mean_density_cpic_L
####### Site M, CPIC ########
load("Results/JAGS/cpic_M_mcmc.RData")
# combine chains
df_mcmc_cpic_M <- as.data.frame(cpic_M_mcmc[[1]])
for(i in 2:length(cpic_M_mcmc)) {
df_mcmc_cpic_M <- bind_rows(df_mcmc_cpic_M, as.data.frame(cpic_M_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_M <- df_mcmc_cpic_M %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_M <- centers_cpic_M[1:n_indM, ]
hist(centers_cpic_M) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_M <- df_mcmc_cpic_M$density[501:1000] #densities per iteration after burnin
stderror_cpic_M <- std.error(as.vector(densities_cpic_M))
mean_density_cpic_M <- mean(densities_cpic_M) # Mean # turtles per 100 meters
estimated_N_cpic_M <- df_mcmc_cpic_M$N[501:1000]
mean_est_N_cpic_M <- mean(estimated_N_cpic_M) # Mean # turtles over trap area (+ boundary)
mean_est_N_cpic_M/mean_density_cpic_M
####### Site M, CSER ########
load("Results/JAGS/cser_M_mcmc.RData")
# combine chains
df_mcmc_cser_M <- as.data.frame(cser_M_mcmc[[1]])
for(i in 2:length(cser_M_mcmc)) {
df_mcmc_cser_M <- bind_rows(df_mcmc_cser_M, as.data.frame(cser_M_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cser_M <- df_mcmc_cser_M %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cser_M <- centers_cser_M[1:n_indM, ]
hist(centers_cser_M) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cser_M <- df_mcmc_cser_M$density[501:1000] #densities per iteration after burnin
stderror_cser_M <- std.error(as.vector(densities_cser_M))
mean_density_cser_M <- mean(densities_cser_M) # Mean # turtles per 100 meters
estimated_N_cser_M <- df_mcmc_cser_M$N[501:1000]
mean_est_N_cser_M <- mean(estimated_N_cser_M) # Mean # turtles over trap area (+ boundary)
mean_est_N_cser_M/mean_density_cser_M
####### Site N, CPIC ########
load("Results/JAGS/cpic_N_mcmc.RData")
# combine chains
df_mcmc_cpic_N <- as.data.frame(cpic_N_mcmc[[1]])
for(i in 2:length(cpic_N_mcmc)) {
df_mcmc_cpic_N <- bind_rows(df_mcmc_cpic_N, as.data.frame(cpic_N_mcmc[[i]]))
}
# Obtain Activity Centers
centers_cpic_N <- df_mcmc_cpic_N %>%
select(starts_with("s[")) %>%
summarise_all(mean) %>%
t()
centers_cpic_N <- centers_cpic_N[1:n_indN, ]
hist(centers_cpic_N) # activity centers for individuals caught at least once
#### Obtaining Density and N
densities_cpic_N <- df_mcmc_cpic_N$density[501:1000] #densities per iteration after burnin
stderror_cpic_N <- std.error(as.vector(densities_cpic_N))