-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlecture-04.tex
502 lines (459 loc) · 18.5 KB
/
lecture-04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
\documentclass[handout]{beamer}
\usepackage{graphicx}
\usepackage{tikz-cd}
\usepackage{mathtools}
\title{EPIT Lecture 5.4\\ Homotopy groups of types}
\author{Egbert Rijke}
\date{Friday, April 16th 2020}
\setbeamertemplate{caption}{\raggedright\insertcaption\par}
\mathchardef\usc="2D
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\UU}{\mathcal{U}}
\newcommand{\brck}[1]{\|#1\|}
\newcommand{\Brck}[1]{\left\|#1\right\|}
\newcommand{\trunc}[2]{\|#2\|_{#1}}
\newcommand{\Trunc}[2]{\left\|#2\right\|_{#1}}
\newcommand{\unit}{\mathbf{1}}
\newcommand{\sphere}[1]{S^{#1}}
\newcommand{\isnull}{\mathsf{is\usc{}null}}
\newcommand{\htpy}{\sim}
\newcommand{\apbinary}{\mathsf{ap\usc{}bin}}
\newcommand{\Glob}{\mathsf{Glob}}
\newcommand{\typeGlob}{\mathsf{type}}
\newcommand{\relGlob}{\mathsf{rel}}
\newcommand{\homGlob}{\mathsf{hom}}
\newcommand{\maphomGlob}{\mathsf{map}}
\newcommand{\cgrhomGlob}{\mathsf{cgr}}
\newcommand{\bihomGlob}{\mathsf{bihom}}
\newcommand{\mapbihomGlob}{\mathsf{map}}
\newcommand{\cgrbihomGlob}{\mathsf{cgr}}
\newcommand{\ct}{\bullet}
\newcommand{\isconstant}[2]{\mathsf{is\usc{}}(#1,#2)\mathsf{\usc{}constant}}
\newcommand{\ap}{\mathsf{ap}}
\newcommand{\interchange}{\mathsf{interchange}}
\newcommand{\refl}{\mathsf{refl}}
\newcommand{\eh}{\mathsf{eckmann\usc{}hilton}}
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
\newcommand{\EM}{\mathsf{EM}}
\newcommand{\baseS}{\mathsf{base}}
\newcommand{\loopS}{\mathsf{loop}}
\newcommand{\apd}{\mathsf{apd}}
\newcommand{\tr}{\mathsf{tr}}
\newcommand{\idfunc}{\mathsf{id}}
\newcommand{\mulcircle}{\mu}
\newcommand{\basemulcircle}{\mathsf{base\usc{}mul}_{\sphere{1}}}
\newcommand{\loopmulcircle}{\mathsf{loop\usc{}mul}_{\sphere{1}}}
\newcommand{\htpyidcircle}{H}
\newcommand{\basehtpyidcircle}{\alpha}
\newcommand{\loophtpyidcircle}{\beta}
\newcommand{\invcircle}{\mathsf{inv}_{\sphere{1}}}
\newcommand{\evbase}{\mathsf{ev\usc{}base}}
\newcommand{\eqhtpy}{\mathsf{eq\usc{}htpy}}
\newcommand{\apply}[2]{#1(#2)}
\newcommand{\equiveq}{\mathsf{equiv\usc{}eq}}
\newcommand{\succZ}{\mathsf{succ}}
\newcommand{\bool}{\mathsf{bool}}
\newcommand{\const}{\mathsf{const}}
\newcommand{\btrue}{\mathsf{true}}
\newcommand{\bfalse}{\mathsf{false}}
\newcommand{\ttt}{\mathsf{pt}}
\newcommand{\Prop}{\mathsf{Prop}}
\newcommand{\eh}{\mathsf{eckmann\usc{}hilton}}
\newcommand{\fib}{\mathsf{fib}}
\newcommand{\im}{\mathsf{im}}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\huge{Part 1. Homotopy groups}
\end{frame}
\begin{frame}
\begin{definition}
Let $\UU_\ast:=\sum_{(X:\UU)}X$ be the type of pointed types in $\UU$. We define an operation
\begin{equation*}
\Omega : \UU_\ast\to\UU_\ast
\end{equation*}
by $\Omega(X,x):=(x=x,\refl)$. Furthermore, we define $\Omega^k(X,x)$ for $k:\N$ by
\begin{align*}
\Omega^0(X,x) & :=(X,x) \\
\Omega^{k+1}(X,x) & := \Omega(\Omega^k(X,x)).
\end{align*}
\end{definition}
\begin{definition}
Consider a poited type $(X,x)$ and a natural number $k$. Then we define
\begin{equation*}
\pi_k(X,x):=\trunc{0}{\Omega^k(X,x)}
\end{equation*}
\end{definition}
\end{frame}
\begin{frame}
Recall that any type can be set-truncated, i.e., for any type $X$ there is a type $\trunc{0}{X}$ equipped with a map
\begin{equation*}
\eta : X \to \trunc{0}{X}
\end{equation*}
that satisfies the universal property that the map
\begin{equation*}
(\trunc{0}{X}\to Y)\to (X\to Y)
\end{equation*}
is an equivalence, for any set $Y$.\\[\baselineskip]\pause
In other words, for any map $f:X\to Y$ into a set $Y$ there is a unique map $g:\trunc{0}{X}\to Y$ equipped with a homotopy witnessing that the triangle
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
X \arrow[d,swap,"\eta"] \arrow[dr,"f"] \\
\trunc{0}{X} \arrow[r,swap,"g"] \& Y
\end{tikzcd}
\end{equation*}
commutes.
\end{frame}
\begin{frame}
\begin{lemma}
The type $\pi_{k+1}(X,x)$ comes equipped with the structure of a group.
\end{lemma}\pause
\begin{proof}
We define $1:=\eta(\refl)$. The group multiplication is the unique map
\begin{equation*}
\blank\cdot\blank : \pi_{k+1}(X,x)\to (\pi_{k+1}(X,x)\to \pi_{k+1}(X,x))
\end{equation*}
such that
\begin{equation*}
\eta(p)\cdot\eta(q)=\eta(p\bullet q).
\end{equation*}
We need to verify the group laws. E.g., to prove $1\cdot \omega = \omega$, it suffices to show that $1\cdot\eta(p)=\eta(p)$. By definition, this is equivalent to showing that
\begin{equation*}
\eta(\refl\bullet p)=\eta(p),
\end{equation*}
which follows by the unit law for concatenation.
\end{proof}
\end{frame}
\begin{frame}
\huge{Part 2. The Eckmann-Hilton argument}
\end{frame}
\begin{frame}
\begin{theorem}
For any $k\geq 2$ and any pointed type $X$, the homotopy group
\begin{equation*}
\pi_k(X)
\end{equation*}
is abelian.
\end{theorem}
\end{frame}
\begin{frame}
\begin{definition}
For any binary operation $f:A\to B\to C$ there is a binary action on paths
\begin{equation*}
\apbinary_f:(x=x')\to (y=y')\to (f(x,y)=f(x',y')).
\end{equation*}
defined by $\apbinary_f(\refl,\refl):=\refl$.
\end{definition}\pause
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,column sep=6em]
x \arrow[r,bend left=30,equals,"p",""{name=A,below}]
\arrow[r,bend right=30,equals,swap,"{p'}",""{name=B,above}]
\&
y \arrow[r,bend left=30,equals,"q",""{name=C,below}]
\arrow[r,bend right=30,equals,"{q'}"',""{name=D,above}]
\&
z
\arrow[from=A,to=B,phantom,"\Downarrow"]
\arrow[from=C,to=D,phantom,"\Downarrow"]
\end{tikzcd}
\end{equation*}\pause
\begin{definition}
For any $x,y,z:A$ and any $p,p':x=y$ and $q,q':y=z$ we define
\begin{equation*}
\blank\circ\blank : (p=p')\to (q=q')\to (p \bullet q=p' \bullet q')
\end{equation*}
by $\blank\circ\blank := \apbinary_{\blank\bullet\blank}$.
\end{definition}
\end{frame}
\begin{frame}
\frametitle{The interchange law}
\begin{lemma}
Suppose we have the following:
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,column sep=6em]
x \arrow[r,bend left=60,equals,""{name=A,below},"{p}"]
\arrow[r,equals,""{name=B,above},""{name=C,below},"{p'}"{near end}]
\arrow[r,bend right=60,equals,""{name=D,above},"{p''}"']
\& y
\arrow[r,bend left=60,equals,""{name=AA,below},"{q}"]
\arrow[r,equals,""{name=BA,above},""{name=CA,below},"{q'}"{near end}]
\arrow[r,bend right=60,equals,""{name=DA,above},"{q''}"']
\& z
\arrow[from=A,to=B,phantom,"s\Downarrow"]
\arrow[from=C,to=D,phantom,"t\Downarrow"]
\arrow[from=AA,to=BA,phantom,"u\Downarrow"]
\arrow[from=CA,to=DA,phantom,"v\Downarrow"]
\end{tikzcd}
\end{equation*}
Then there is an identification
\begin{equation*}
(s\bullet t)\circ (u\bullet v)=(s\circ u)\bullet (t\circ v).
\end{equation*}
\end{lemma}\pause
\begin{proof}
By path induction on $s$, $t$, $u$, and $v$. We have
\begin{equation*}
refl : (\refl\bullet\refl)\circ(\refl\bullet\refl)=(\refl\circ\refl)\bullet(\refl\circ\refl).\qedhere
\end{equation*}
\end{proof}
\end{frame}
\begin{frame}
\frametitle{The Eckmann-Hilton argument}
\begin{theorem}
For any pointed type $X$, the homotopy group
\begin{equation*}
\pi_{k+2}(X)
\end{equation*}
is abelian.
\end{theorem}
\begin{proof}
In order to show that $\eta(s)\cdot\eta(t)=\eta(t)\cdot\eta(s)$, it suffices to construct an identification
\begin{equation*}
s\ct t = t \ct s
\end{equation*}
for any $s,t:\Omega^{k+2}(X,x)$. This follows by the following calculation:
\begin{align*}
s\ct t & = (s \circ \refl) \ct (\refl \circ t) & \cdots & = (\refl \ct s) \circ (t \ct \refl) \\
& = (s \ct \refl) \circ (\refl \ct t) & & = (\refl \circ t) \ct (s \circ \refl) \\
& = s \circ t & & = t \ct s. \qedhere
\end{align*}
\end{proof}
\end{frame}
\begin{frame}
\huge{Part 3. The long exact sequence}
\end{frame}
\begin{frame}
\begin{definition}
Consider a short sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
X \arrow[r,"f"] \& Y \arrow[r,"g"] \& Z
\end{tikzcd}
\end{equation*}
of base point preserving maps between pointed sets. We say that this short sequence is \textbf{exact} at $Y$ if we have
\begin{equation*}
\left\|\sum\nolimits_{(x:X)}f(x)=y\right\|_{-1}\leftrightarrow (g(y)=z_0).
\end{equation*}\\[\baselineskip]\pause
In other words, the short sequence $X\to Y\to Z$ is exact at $Y$ if
\begin{equation*}
\im(f)=\fib_{g}(z_0)
\end{equation*}
as subtypes of $Y$.
\end{definition}
\end{frame}
\begin{frame}
The set truncation $\trunc{0}{X}$ can be thought of as a quotient
\begin{equation*}
X/(x,y\mapsto\brck{x=y}).
\end{equation*}
The following lemma shows that this intuition is right\footnote{A similar idea works for the higher truncations}:\\[\baselineskip]
\begin{lemma}
For any $x,y:X$, there is an equivalence
\begin{equation*}
(\eta(x)=\eta(y))\simeq \trunc{-1}{x=y}.
\end{equation*}
\end{lemma}
\end{frame}
\begin{frame}
\frametitle{Proof}
The proof is by the encode-decode method. Let $x:X$. By the universal property of $\trunc{0}{X}$ there is a unique map $E:\trunc{0}{X}\to\Prop$ for which the triangle
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
X \arrow[d,swap,"\eta"] \arrow[dr,"\lambda y.\trunc{-1}{x=y}"] \\
\trunc{0}{X} \arrow[r,swap,"E"] \& \Prop
\end{tikzcd}
\end{equation*}
commutes. In other words, $E$ is the unique family of propositions over $\trunc{0}{X}$ equipped with a family of equivalences
\begin{equation*}
E(\eta(y))\simeq \trunc{-1}{x=y}.
\end{equation*}
It remains to show that the type $\sum_{z:\trunc{0}{X}}E(z)$ is contractible with center of contraction $(\eta(x),\eta(\refl{}))$.
\end{frame}
\begin{frame}
\frametitle{Proof (Cont).}
To construct the contraction, we have to show
\begin{equation*}
\prod_{(z:\trunc{0}{X})}\prod_{(p:E(z))}(\eta(x),\eta(\refl))=(z,p)
\end{equation*}
Since $E$ is a subtype of $\trunc{0}{X}$, we have equivalences
\begin{equation*}
((\eta(x),\eta(\refl))=(z,p))\simeq (\eta(x)=z).
\end{equation*}
This identity type is a proposition. Furthermore, using the fact that $E(\eta(y))\simeq\trunc{-1}{x=y}$, it suffices to prove
\begin{equation*}
\prod_{(y:X)}\prod_{(p:\trunc{-1}{x=y})}\eta(x)=\eta(y)
\end{equation*}
The proof is completed by the universal property of propositional truncation and path induction.\hfill$\square$
\end{frame}
\begin{frame}
Recall that a fiber sequence $F\to E\to B$ consists of pointed maps between pointed types, such that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
F \arrow[d] \arrow[r] \& E \arrow[d] \\
\unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
is a pullback square.
\begin{lemma}
Consider a fiber sequence $F\stackrel{i}{\to} E\stackrel{p}{\to} B$ of pointed types and maps, and the induced sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\trunc{0}{F}\arrow[r,"\trunc{0}{i}"] \& \trunc{0}{E} \arrow[r,"\trunc{0}{p}"] \& \trunc{0}{B}.
\end{tikzcd}
\end{equation*}
This sequence is exact at $\trunc{0}{E}$.
\end{lemma}
\end{frame}
\begin{frame}
\\[3em]
\begin{proof}
Our goal is to show that
\begin{equation*}
\left\|\sum\nolimits_{(x:\trunc{0}{F})}\trunc{0}{i}(x)=y\right\|\leftrightarrow (\trunc{0}{p}(y)=\eta(b_0)).
\end{equation*}
for any $y:\trunc{0}{E}$. This is a proposition, so we may assume $y:E$. Note that $\trunc{0}{p}(\eta(y))=\eta(p(y))$. Therefore it is equivalent to show
\begin{equation*}
\left\|\sum\nolimits_{(x:\trunc{0}{F})}\trunc{0}{i}(x)=\eta(y)\right\|\leftrightarrow \brck{p(y)=b_0}.
\end{equation*}
The backwards direction is immediate by the universal property of propositional truncation and path induction. \\[10em]
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Proof (cont).}
It remains to prove
\begin{equation*}
\left\|\sum\nolimits_{(x:\trunc{0}{F})}\trunc{0}{i}(x)=\eta(y)\right\|\to \brck{p(y)=b_0}.
\end{equation*}
By the universal property of the propositional truncation, it suffices to show that
\begin{equation*}
\brck{p(y)=b_0}
\end{equation*}
for any $x:\trunc{0}{X}$ and $\alpha:\trunc{0}{i}(x)=\eta(y)$. We're proving a proposition, so we may assume $x:X$ and $\alpha:\eta(i(x))=\eta(y)$. The type of $\alpha$ is equivalent to the type $\brck{i(x)=y}$, so we complete the proof by one last application of the universal property of the propositional truncation, and path induction.
\end{frame}
\begin{frame}
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\phantom{\cdots} \arrow[r,phantom,"\phantom{\Omega\delta}"] \& \phantom{\Omega F} \arrow[r,phantom] \arrow[d,phantom,"\phantom{\Omega i}"] \& \phantom{\unit} \arrow[d,phantom] \\
\phantom{\cdots} \arrow[r,phantom] \& \phantom{\Omega E} \arrow[r,phantom,"\phantom{\Omega p}"] \arrow[d,phantom] \& \phantom{\Omega B} \arrow[d,phantom,"\phantom{\delta}"] \arrow[r,phantom] \& \phantom{\unit} \arrow[d,phantom] \\
\& \phantom{\unit} \arrow[r,phantom] \& F \arrow[r,"i"] \arrow[d] \& E \arrow[d,"p"] \\
\& \& \unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\phantom{\cdots} \arrow[r,phantom,"\phantom{\Omega\delta}"] \& \phantom{\Omega F} \arrow[r,phantom] \arrow[d,phantom,"\phantom{\Omega i}"] \& \phantom{\unit} \arrow[d,phantom] \\
\phantom{\cdots} \arrow[r,phantom] \& \phantom{\Omega E} \arrow[r,phantom,"\phantom{\Omega p}"] \arrow[d,phantom] \& \Omega B \arrow[d,"\delta"] \arrow[r] \& \unit \arrow[d] \\
\& \phantom{\unit} \arrow[r,phantom] \& F \arrow[r,"i"] \arrow[d] \& E \arrow[d,"p"] \\
\& \& \unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\phantom{\cdots} \arrow[r,phantom,"\phantom{\Omega\delta}"] \& \phantom{\Omega F} \arrow[r,phantom] \arrow[d,phantom,"\phantom{\Omega i}"] \& \phantom{\unit} \arrow[d,phantom] \\
\phantom{\cdots} \arrow[r,phantom] \& \Omega E \arrow[r,"\Omega p"] \arrow[d] \& \Omega B \arrow[d,"\delta"] \arrow[r] \& \unit \arrow[d] \\
\& \unit \arrow[r] \& F \arrow[r,"i"] \arrow[d] \& E \arrow[d,"p"] \\
\& \& \unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\phantom{\cdots} \arrow[r,phantom,"\phantom{\Omega\delta}"] \& \Omega F \arrow[r] \arrow[d,swap,"\Omega i"] \& \unit \arrow[d] \\
\phantom{\cdots} \arrow[r,phantom] \& \Omega E \arrow[r,"\Omega p"] \arrow[d] \& \Omega B \arrow[d,"\delta"] \arrow[r] \& \unit \arrow[d] \\
\& \unit \arrow[r] \& F \arrow[r,"i"] \arrow[d] \& E \arrow[d,"p"] \\
\& \& \unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\cdots \arrow[r,"\Omega\delta"] \& \Omega F \arrow[r] \arrow[d,swap,"\Omega i"] \& \unit \arrow[d] \\
\cdots \arrow[r] \& \Omega E \arrow[r,"\Omega p"] \arrow[d] \& \Omega B \arrow[d,"\delta"] \arrow[r] \& \unit \arrow[d] \\
\& \unit \arrow[r] \& F \arrow[r,"i"] \arrow[d] \& E \arrow[d,"p"] \\
\& \& \unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
The sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,column sep=small]
\cdots\arrow[r] \& \Omega F \arrow[r] \& \Omega E \arrow[r] \& \Omega B \arrow[r] \& F \arrow[r] \& E \arrow[r] \& B
\end{tikzcd}
\end{equation*}
is a fiber sequence at each step, so it induces the long exact sequence of homotopy groups
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,column sep=small]
\& \& \cdots \arrow[dll,out=0, in=180, looseness=2,overlay] \\
\pi_1(F) \arrow[r] \& \pi_1(E) \arrow[r] \& \pi_1(B) \arrow[dll,out=0, in=180, looseness=2,overlay] \\
\pi_0(F) \arrow[r] \& \pi_0(E) \arrow[r] \& \pi_0(B).
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{corollary}
We have
\begin{equation*}
\pi_k(\sphere{3})=\pi_k(\sphere{2})
\end{equation*}
for each $k\geq 3$.
\end{corollary}
\begin{proof}
By the Hopf fibration $\sphere{1}\to\sphere{3}\to\sphere{2}$ we obtain a long exact sequence
\begin{equation*}
\mathclap{
\begin{tikzcd}[ampersand replacement=\&,column sep=1em]
{} \arrow[r] \& \pi_1(\sphere{1}) \arrow[r] \& \pi_1(\sphere{3}) \arrow[r] \& \pi_1(\sphere{2}) \arrow[r] \& \pi_0(\sphere{1}) \arrow[r] \& \pi_0(\sphere{3}) \arrow[r] \& \pi_0(\sphere{2})
\end{tikzcd}}
\end{equation*}
However, since $\sphere{1}$ is a $1$-type, it follows that $\pi_k(\sphere{1})=0$ for $k\geq 2$. Therefore we have an exact sequence of groups
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
0 \arrow[r] \& \pi_k(\sphere{3}) \arrow[r] \& \pi_k(\sphere{2}) \arrow[r] \& 0
\end{tikzcd}
\end{equation*}
for each $k\geq 3$. This implies that the group homomorphism $\pi_k(\sphere{3})\to\pi_k(\sphere{2})$ is an isomorphism for those $k$.
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Exercises}
\begin{enumerate}
\item Show that a group homomorphism $h:G\to H$ is an isomorphism if and only if it fits in an exact sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
0 \arrow[r] \& G \arrow[r,"h"] \& H \arrow[r] \& 0.
\end{tikzcd}
\end{equation*}
\item Suppose that $X$ is $n$-truncated. Show that the homotopy groups
\begin{equation*}
\pi_i(X,x)
\end{equation*}
are trivial, for each $x:X$ and $n<i$.
\item Let $X$ be a type and let $n\geq 0$. Show that the following are equivalent:
\begin{itemize}
\item The type $\trunc{-1}{X}$ has an element, and the homotopy groups
\begin{equation*}
\pi_i(X,x)
\end{equation*}
are trivial, for each $x:X$ and each $0\leq i\leq n$.
\item The $n$-truncation $\trunc{n}{X}$ is contractible.\\[\baselineskip]
(In this case we also say that $X$ is \textbf{$n$-connected}.)
\end{itemize}
\end{enumerate}
\end{frame}
\begin{frame}
\textbf{Open problem:}\\
Compute all the homotopy groups of all the spheres.
\end{frame}
\end{document}