-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlecture-03.tex
435 lines (398 loc) · 14.6 KB
/
lecture-03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
\documentclass[handout]{beamer}
\usepackage{graphicx}
\usepackage{tikz-cd}
\title{EPIT Lecture 5.3\\ Homotopical constructions of types}
\author{Egbert Rijke}
\date{Friday, April 16th 2020}
\setbeamertemplate{caption}{\raggedright\insertcaption\par}
\mathchardef\usc="2D
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\UU}{\mathcal{U}}
\newcommand{\brck}[1]{\|#1\|}
\newcommand{\Brck}[1]{\left\|#1\right\|}
\newcommand{\trunc}[2]{\|#2\|_{#1}}
\newcommand{\Trunc}[2]{\left\|#2\right\|_{#1}}
\newcommand{\unit}{\mathbf{1}}
\newcommand{\sphere}[1]{S^{#1}}
\newcommand{\isnull}{\mathsf{is\usc{}null}}
\newcommand{\htpy}{\sim}
\newcommand{\apbinary}{\mathsf{ap\usc{}bin}}
\newcommand{\Glob}{\mathsf{Glob}}
\newcommand{\typeGlob}{\mathsf{type}}
\newcommand{\relGlob}{\mathsf{rel}}
\newcommand{\homGlob}{\mathsf{hom}}
\newcommand{\maphomGlob}{\mathsf{map}}
\newcommand{\cgrhomGlob}{\mathsf{cgr}}
\newcommand{\bihomGlob}{\mathsf{bihom}}
\newcommand{\mapbihomGlob}{\mathsf{map}}
\newcommand{\cgrbihomGlob}{\mathsf{cgr}}
\newcommand{\ct}{\bullet}
\newcommand{\isconstant}[2]{\mathsf{is\usc{}}(#1,#2)\mathsf{\usc{}constant}}
\newcommand{\ap}{\mathsf{ap}}
\newcommand{\interchange}{\mathsf{interchange}}
\newcommand{\refl}{\mathsf{refl}}
\newcommand{\eh}{\mathsf{eckmann\usc{}hilton}}
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
\newcommand{\EM}{\mathsf{EM}}
\newcommand{\baseS}{\mathsf{base}}
\newcommand{\loopS}{\mathsf{loop}}
\newcommand{\apd}{\mathsf{apd}}
\newcommand{\tr}{\mathsf{tr}}
\newcommand{\idfunc}{\mathsf{id}}
\newcommand{\mulcircle}{\mu}
\newcommand{\basemulcircle}{\mathsf{base\usc{}mul}_{\sphere{1}}}
\newcommand{\loopmulcircle}{\mathsf{loop\usc{}mul}_{\sphere{1}}}
\newcommand{\htpyidcircle}{H}
\newcommand{\basehtpyidcircle}{\alpha}
\newcommand{\loophtpyidcircle}{\beta}
\newcommand{\invcircle}{\mathsf{inv}_{\sphere{1}}}
\newcommand{\evbase}{\mathsf{ev\usc{}base}}
\newcommand{\eqhtpy}{\mathsf{eq\usc{}htpy}}
\newcommand{\apply}[2]{#1(#2)}
\newcommand{\equiveq}{\mathsf{equiv\usc{}eq}}
\newcommand{\succZ}{\mathsf{succ}}
\newcommand{\bool}{\mathsf{bool}}
\newcommand{\const}{\mathsf{const}}
\newcommand{\btrue}{\mathsf{true}}
\newcommand{\bfalse}{\mathsf{false}}
\newcommand{\ttt}{\mathsf{pt}}
\newcommand{\inl}{\mathsf{inl}}
\newcommand{\inr}{\mathsf{inr}}
\newcommand{\glue}{\mathsf{glue}}
\newcommand{\fib}{\mathsf{fib}}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
Many spaces in topology are constructed by attaching cells, i.e., they are defined as CW-complexes.
\begin{example}
We can define a sphere by gluing the boundary of a disk to a single point.
\end{example}
Such constructions satisfy universal properties. In type theory, we can define many of them as higher inductive type.\\[1em]
In this lecture we will see basic constructions of types such as spheres and suspensions, and we will study their basic properties.
\end{frame}
\begin{frame}
\frametitle{Homotopy pushouts}
Given $A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B$, the pushout of $f$ and $g$ is a type $A\sqcup^S B$ that fits in a commuting square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
S \arrow[d,swap,"f"] \arrow[r,"g"] \& B \arrow[d,"\inr"] \\
A \arrow[r,swap,"\inl"] \& A\sqcup^C B
\end{tikzcd}
\end{equation*}
I.e., it is the higher inductive type generated $A\sqcup^S B$ generated by
\begin{align*}
\inl & : A \to A\sqcup^S B \\
\inr & : B \to A\sqcup^S B \\
\glue & : \prod_{(s:S)}\inl(f(s))=\inr(g(s)).
\end{align*}
\end{frame}
\begin{frame}
The induction principle for the higher inductive type $A\sqcup^S B$ implies the universal property of the pushout: For any type $X$ equipped with
\begin{align*}
i & : A \to X \\
j & : B \to X \\
H & : i\circ f \sim j\circ g
\end{align*}
there is a unique map $h:A\sqcup^S B\to X$ such that the following diagram commutes:
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
S \arrow[d,swap,"f"] \arrow[r,"g"] \& B \arrow[d,swap,"\inr"] \arrow[ddr,bend left=15,"j"] \\
A \arrow[r,"\inl"] \arrow[drr,bend right=15,swap,"i"] \& A \sqcup^S B \arrow[dr,"h"] \\
\& \& X
\end{tikzcd}
\end{equation*}
\end{frame}
\begin{frame}
\begin{example}
The circle fits in a pushout square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\mathbf{2} \arrow[r] \arrow[d] \& \mathbf{1} \arrow[d] \\
\mathbf{1} \arrow[r] \& \sphere{1}
\end{tikzcd}
\end{equation*}
in whith the homotopy $H:\const_\baseS\circ\const_\ttt\htpy\const\baseS\circ\const_\ttt$ is given by
\begin{align*}
H(\btrue) & := \loopS \\
H(\bfalse) & := \refl
\end{align*}
\end{example}
\end{frame}
\begin{frame}
\begin{example}
The suspension $\Sigma X$ of a type $X$ is the pushout
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
X \arrow[r] \arrow[d] \& \unit \arrow[d,"S"] \\
\unit \arrow[r,swap,"N"] \& \Sigma X.
\end{tikzcd}
\end{equation*}
In other words, the type $\Sigma X$ is the higher inductive type generated by
\begin{align*}
N,S & : \Sigma X \\
\glue & : X\to (N=S).
\end{align*}
\end{example}
\end{frame}
\begin{frame}
\frametitle{The suspension-loop space adjunction}
\begin{definition}
Let $X$ and $Y$ be types equipped with points $x_0$ and $y_0$. We define the type of \textbf{pointed maps}
\begin{equation*}
(X\to_\ast Y):=\sum\nolimits_{(f:X\to Y)}f(x_0)=y_0.
\end{equation*}
\end{definition}
\begin{definition}
Let $X$ be a type equipped with a point $x_0$. Then we define
\begin{equation*}
\Omega(X,x_0):= x_0=x_0.
\end{equation*}
This type comes equipped with the point $\refl:\Omega(X,x)$.
\end{definition}
\begin{theorem}
Let $X$ be a type equipped with a point $x_0$. Then we have an equivalence
\begin{equation*}
(\Sigma X\to_\ast Y)\simeq (X\to_\ast\Omega Y)
\end{equation*}
\end{theorem}
\end{frame}
\begin{frame}
\begin{proof}
\begin{align*}
(\Sigma X \to_\ast Y)
& \doteq \sum_{(f:\Sigma X\to Y)}f(N)=y_0 \\ \pause
& \simeq \sum_{(y,y':Y)}(h:X\to y=y')\times (y=y_0) \\ \pause
& \simeq \sum_{(y':Y)}(h:X\to y_0=y') \\ \pause
& \simeq \sum_{(y':Y)}\sum_{(p:y_0=y')}\sum_{(h:X\to y_0=y')}h(x_0)=\refl \\ \pause
& \simeq \sum_{(h:X\to y_0=y_0)}h(x_0)=\refl \\ \pause
& \doteq X\to_\ast \Omega Y\qedhere
\end{align*}
\end{proof}
\end{frame}
\begin{frame}
\begin{definition}
The spheres are defined recursively by
\begin{align*}
\sphere{0} & := \mathbf{2} \\
\sphere{n+1} & :=\Sigma\sphere{n}.
\end{align*}
\end{definition}
\begin{theorem}
Let $X$ be a pointed type. Then we have
\begin{equation*}
(\sphere{n}\to_\ast X)\simeq \Omega^n(X).
\end{equation*}
\end{theorem}
\end{frame}
\begin{frame}
\begin{definition}
The join $A\ast B$ of two types $A$ and $B$ is defined as the pushout
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
A\times B \arrow[d,"\pi_1"] \arrow[r,"\pi_2"] \& B \arrow[d,"\inr"] \\
A \arrow[r,swap,"\inl"] \& A\ast B
\end{tikzcd}
\end{equation*}
In other words, $A\ast B$ is the higher inductive type with
\begin{align*}
\inl & : A \to A \ast B \\
\inr & : B \to A \ast B \\
\glue & : \prod_{(a:A)}\prod_{(b : B)}\inl(a)=\inr(b).
\end{align*}
\end{definition}
\end{frame}
\begin{frame}
\begin{theorem}
There is an equivalence $\mathbf{2}\ast X\simeq \Sigma X$.
\end{theorem}
\begin{theorem}
There is an equivalence $(A\ast B)\ast C\simeq A\ast(B\ast C)$.
\end{theorem}
\begin{proof}
By the 3-by-3 lemma.
\end{proof}
\begin{corollary}
There is an equivalence $\sphere{n}\ast X\simeq \Sigma^{n+1}X$.
\end{corollary}
\begin{corollary}
There is an equivalence $\sphere{n}\ast\sphere{m}\simeq \sphere{n+m+1}$.
\end{corollary}
\end{frame}
\begin{frame}
\frametitle{Homotopy pullbacks}
The notion of pullback is dual to the notion of pushout.
\begin{definition}
A commuting square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
C \arrow[d,swap,"p"] \arrow[r,"q"] \& B \arrow[d,"g"] \\
A \arrow[r,swap,"f"] \& X,
\end{tikzcd}
\end{equation*}
equipped with $H:f\circ p\sim g\circ q$ is said to be a \textbf{pullback square} if it satisfies the universal property of the pullback: For any type $C'$, the map
\begin{equation*}
(C'\to C)\to \sum_{(p':C'\to A)}\sum_{(q':C'\to B)}f\circ p'\sim g\circ q'
\end{equation*}
given by $h\mapsto (p\circ h,q\circ h,H\circ h)$, is an equivalence.
\end{definition}
\end{frame}
\begin{frame}
\frametitle{Existence of pullbacks}
\begin{theorem}
For any $A\stackrel{f}{\to} X \stackrel{g}{\leftarrow} B$, the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\sum_{(a:A)}\sum_{(b:B)}f(a)=g(b) \arrow[d] \arrow[r] \& B \arrow[d,"g"] \\
A \arrow[r,swap,"f"] \& X
\end{tikzcd}
\end{equation*}
is a pullback square.
\end{theorem}
\begin{proof}
The universal property holds because $\Pi$ distributes over $\Sigma$:
\begin{equation*}
\left(X\to \sum_{(a:A)}\sum_{(b:B)}f(a)=g(b)\right)\simeq\sum_{(p':X\to A)}\sum_{(q':X\to B)}f\circ p'\sim g\circ q'.\qedhere
\end{equation*}
\end{proof}
\end{frame}
\begin{frame}
Recall that the fiber of a map $f:A\to B$ at $b:B$ is defined as
\begin{equation*}
\fib_f(b):=\sum_{(a:A)}f(a)=b.
\end{equation*}
\begin{corollary}
For any $f:A\to B$ and any $b:B$ we have a pullback square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\fib_f(b) \arrow[d] \arrow[r,"\pi_1"] \& A \arrow[d,"f"] \\
\unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{corollary}
\end{frame}
\begin{frame}
\begin{theorem}
Consider a commuting square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
E' \arrow[d,swap,"{p'}"] \arrow[r] \& E \arrow[d,"p"] \\
B' \arrow[r,swap,"f"] \& B
\end{tikzcd}
\end{equation*}
Then the following are equivalent:
\begin{enumerate}
\item The square is a pullback square.
\item The induced map $\fib_{p'}(y)\to \fib_p(f(y))$ is an equivalence, for every $y:B'$.
\end{enumerate}
\end{theorem}
\end{frame}
\begin{frame}
\begin{theorem}[Descent for pushouts]
Consider a commuting cube
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,row sep=small]
\& S' \arrow[dl] \arrow[d] \arrow[dr] \\
A' \arrow[d] \& S \arrow[dl] \arrow[dr] \& B' \arrow[dl,crossing over] \arrow[d] \\
A \arrow[dr] \& X' \arrow[from=ul,crossing over] \arrow[d] \& B \arrow[dl] \\
\& X
\end{tikzcd}
\end{equation*}
In which the bottom square is a pushout square and the two vertical squares in the back are pullback squares. The following are equivalent:
\begin{enumerate}
\item The two vertical squares in the front are pullback squares.
\item The top square is a pushout square.
\end{enumerate}
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{The Hopf fibration}
Consider the following commuting cube:
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,row sep=small]
\& \sphere{1}\times\sphere{1} \arrow[dl,swap,"\pi_1"] \arrow[d,"\mu"] \arrow[dr,"\pi_2"] \\
\sphere{1} \arrow[d] \& \sphere{1} \arrow[dl] \arrow[dr] \& \sphere{1} \arrow[dl,crossing over] \arrow[d] \\
\unit \arrow[dr] \& \sphere{1}\ast\sphere{1} \arrow[from=ul,crossing over] \arrow[d,dashed] \& \unit \arrow[dl] \\
\& \sphere{2}
\end{tikzcd}
\end{equation*}
where $\mu$ is the complex multiplication constructed in lecture 5.1.
\begin{itemize}
\item The top and bottom squares are pushouts.
\item The two back squares are pullback squares because
\begin{equation*}
\mu(x,\blank)\qquad\text{and}\qquad\mu(\blank,y)
\end{equation*}
are equivalences, for any $x,y:\sphere{1}$.
\item Therefore the front two squares are pullbacks by the descent theorem.
\end{itemize}
\end{frame}
\begin{frame}
In particular, we have a pullback square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\sphere{1} \arrow[r,"\inl"] \arrow[d] \& \sphere{1}\ast\sphere{1} \arrow[d] \\
\unit \arrow[r] \& \sphere{2}.
\end{tikzcd}
\end{equation*}
\begin{definition}
We say that a composable pair of pointed maps $F\to E\to B$ between pointed types is a \textbf{fiber sequence} if it fits in a pullback square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
F \arrow[d] \arrow[r] \& E \arrow[d] \\
\unit \arrow[r] \& B
\end{tikzcd}
\end{equation*}
\end{definition}
\end{frame}
\begin{frame}
In other words, we have a fiber sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\sphere{1} \arrow[r] \& \sphere{1}\ast\sphere{1} \arrow[r] \& \sphere{2}
\end{tikzcd}
\end{equation*}
Furthermore, we saw before that $\sphere{1}\ast\sphere{1}\simeq\sphere{3}$. Therefore we obtain a fiber sequence
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\sphere{1} \arrow[r] \& \sphere{3} \arrow[r,"h"] \& \sphere{2}.
\end{tikzcd}
\end{equation*}
This fiber sequence is known as the \textbf{Hopf fibration}. There is only one higher Hopf fibration
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\sphere{3} \arrow[r] \& \sphere{7} \arrow[r,"h"] \& \sphere{4},
\end{tikzcd}
\end{equation*}
which is related to the multiplication on $\sphere{3}$, inherited from the multiplication of the unit quaternions.
\end{frame}
\begin{frame}
\frametitle{Exercises}
\begin{enumerate}
\item Let $P$ and $Q$ be propositions. Show that the join $P\ast Q$ is a proposition, and show that it satisfies the universal property of the disjunction $P\vee Q$, i.e., that
\begin{equation*}
(P\ast Q\to R)\to (P\to R)\times(Q\to R)
\end{equation*}
is an equivalence, for any proposition $R$.
\item Let $P$ be a proposition. Show that the suspension $\Sigma P$ is a set, and show that
\begin{equation*}
(N=S)\simeq P.
\end{equation*}
\item Show that a type $A$ is a proposition if and only if the map
\begin{equation*}
\mathsf{inl} : A \to A\ast A
\end{equation*}
is an equivalence.
\end{enumerate}
\end{frame}
\begin{frame}
\textbf{Open problem:}\\
Define the Grassmannians synthetically as higher inductive types.\\[\baselineskip]
\textbf{Related open problem:}\\
Find a pointed type $X$ such that $\Omega X\simeq \sphere{3}$.
\end{frame}
\end{document}