-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlecture-01.tex
318 lines (291 loc) · 11.2 KB
/
lecture-01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
\documentclass[handout]{beamer}
\usepackage{graphicx}
\usepackage{tikz-cd}
\title{EPIT Lecture 5.1\\ The Circle}
\author{Egbert Rijke}
\date{Friday, April 16th 2020}
\setbeamertemplate{caption}{\raggedright\insertcaption\par}
\mathchardef\usc="2D
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\UU}{\mathcal{U}}
\newcommand{\brck}[1]{\|#1\|}
\newcommand{\Brck}[1]{\left\|#1\right\|}
\newcommand{\trunc}[2]{\|#2\|_{#1}}
\newcommand{\Trunc}[2]{\left\|#2\right\|_{#1}}
\newcommand{\unit}{\mathbf{1}}
\newcommand{\sphere}[1]{S^{#1}}
\newcommand{\isnull}{\mathsf{is\usc{}null}}
\newcommand{\htpy}{\sim}
\newcommand{\apbinary}{\mathsf{ap\usc{}bin}}
\newcommand{\Glob}{\mathsf{Glob}}
\newcommand{\typeGlob}{\mathsf{type}}
\newcommand{\relGlob}{\mathsf{rel}}
\newcommand{\homGlob}{\mathsf{hom}}
\newcommand{\maphomGlob}{\mathsf{map}}
\newcommand{\cgrhomGlob}{\mathsf{cgr}}
\newcommand{\bihomGlob}{\mathsf{bihom}}
\newcommand{\mapbihomGlob}{\mathsf{map}}
\newcommand{\cgrbihomGlob}{\mathsf{cgr}}
\newcommand{\ct}{\bullet}
\newcommand{\isconstant}[2]{\mathsf{is\usc{}}(#1,#2)\mathsf{\usc{}constant}}
\newcommand{\ap}{\mathsf{ap}}
\newcommand{\interchange}{\mathsf{interchange}}
\newcommand{\refl}{\mathsf{refl}}
\newcommand{\eh}{\mathsf{eckmann\usc{}hilton}}
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
\newcommand{\EM}{\mathsf{EM}}
\newcommand{\baseS}{\mathsf{base}}
\newcommand{\loopS}{\mathsf{loop}}
\newcommand{\apd}{\mathsf{apd}}
\newcommand{\tr}{\mathsf{tr}}
\newcommand{\idfunc}{\mathsf{id}}
\newcommand{\mulcircle}{\mu}
\newcommand{\basemulcircle}{\mathsf{base\usc{}mul}_{\sphere{1}}}
\newcommand{\loopmulcircle}{\mathsf{loop\usc{}mul}_{\sphere{1}}}
\newcommand{\htpyidcircle}{H}
\newcommand{\basehtpyidcircle}{\alpha}
\newcommand{\loophtpyidcircle}{\beta}
\newcommand{\invcircle}{\mathsf{inv}_{\sphere{1}}}
\newcommand{\evbase}{\mathsf{ev\usc{}base}}
\newcommand{\eqhtpy}{\mathsf{eq\usc{}htpy}}
\newcommand{\apply}[2]{#1(#2)}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Planning for this afternoon}
\begin{description}
\item[14:05-14:30] Part 1. The circle
\item[14:35-15:00] Part 2. The universal cover of the circle
\item[15:05-15:30] Part 3. Homotopical constructions of types
\item[15:35-16:00] Exercise session
\item[16:05-16:30] Part 4. Homotopy groups of types
\item[16:35-17:00] Part 5. The real projective spaces
\item[17:00-17:30] Break
\item[17:30-18:30] Lecture by Paige North on Directed type theory
\end{description}
\end{frame}
\begin{frame}[plain]
\begin{center}
\includegraphics[width=.6\paperwidth]{thierry}
\end{center}
\end{frame}
\begin{frame}
The idea of higher inductive types
\begin{itemize}
\item Generate types by points and identifications.
\begin{itemize}
\item Point constructors
\item Identity constructors
\end{itemize}\pause
\item Equip the type with an induction principle
\begin{itemize}
\item Cases for the point constructors
\item Cases for the identity constructors
\end{itemize}\pause
\item This allows us to study many spaces in type theory that weren't accessible in ordinary MLTT:
\begin{itemize}
\item The circle, spheres, projective spaces, CW complexes, Eilenberg-Mac Lane spaces
\item Pushouts, suspensions, wedge, smash product,
\item Homotopy colimits, universal constructions in algebra
\item Set quotients, groupoid quotients, truncations, Rezk completions, localisations, modalities, spectrifications
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}
\begin{align*}
\baseS & : \sphere{1} \\
\loopS & : \baseS=\baseS
\end{align*}
\end{frame}
\begin{frame}
\frametitle{You could have invented higher inductive types}
An induction principle for a type $X$ tells us how to construct dependent functions
\begin{equation*}
\prod_{(x:X)}\apply{P}{x}
\end{equation*}
for an arbitrary family $P$ over $X$.\pause
\begin{itemize}
\item To find out what the induction principle of $X$ is, the right question to ask is: \\[1em]
{\color{red}Suppose I have a section
\begin{equation*}
f:\prod_{(x:X)}\apply{P}{x}.
\end{equation*}
What structure do I get when I apply $f$ to the point constructors and to the identity constructors?}
\end{itemize}
\end{frame}
\begin{frame}
\begin{lemma}
Let $f:\prod_{(x:X)}\apply{P}{x}$, and let $p:x=y$. Then we can construct an identification
\begin{equation*}
\apply{\apd_f}{p} : \apply{\tr_P}{p,\apply{f}{x}}=\apply{f}{y}
\end{equation*}
in $\apply{P}{y}$. This is the \textbf{dependent action on paths of $f$}.
\end{lemma}\pause
\begin{proof}
By path induction, it suffices to construct an identification
\begin{equation*}
\apply{\tr_P}{\refl{},\apply{f}{x}}=\apply{f}{x}.
\end{equation*}
However, note that $\apply{\tr_P}{\refl{},\apply{f}{x}} \equiv \apply{f}{x}$, so we have such an identification by reflexivity.
\end{proof}
\end{frame}
\begin{frame}
If $f:\prod_{(x:\sphere{1})}\apply{P}{x}$, then we have
\begin{align*}
\apply{f}{\baseS} & : \apply{P}{\baseS} \\
\apply{\apd_f}{\loopS} & : \apply{\tr_P}{\loopS,\apply{f}{\baseS}}= \apply{f}{\baseS}
\end{align*}\pause
Therefore we obtain a map
\begin{equation*}
\Big(\prod_{(x:\sphere{1})}\apply{P}{x}\Big)\to\Big(\sum_{(u:\apply{P}{\baseS})}\apply{tr_P}{\loopS,u}=u\Big)
\end{equation*}\pause
\begin{itemize}
\item The induction principle of $\sphere{1}$ asserts that this map has a section.
\item The dependent universal property of $\sphere{1}$ asserts that this map is an equivalence.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Here's how to use the dependent universal property of $\sphere{1}$}
Suppose we have
\begin{align*}
u & : \apply{P}{\baseS} \\
p & : \apply{\tr_P}{p,u}=u.
\end{align*}
Then there is a unique function $f:\prod_{(x:\sphere{1})}\apply{P}{x}$ equipped with\pause
\begin{itemize}
\item an identification
\begin{equation*}
\alpha : \apply{f}{\baseS} = u
\end{equation*}\pause
\item an identification $\beta$ witnessing that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,column sep=6em]
\apply{\tr_P}{\loopS,\apply{f}{\baseS}} \arrow[d,equals,swap,"\apply{apd_f}{\loopS}"] \arrow[r,equals,"\apply{\ap_{\apply{\tr_P}{\loopS}}}{\alpha}"] \& \apply{\tr_P}{\loopS,u} \arrow[d,equals,"p"] \\
\apply{f}{\baseS} \arrow[r,equals,swap,"\alpha"] \& u
\end{tikzcd}
\end{equation*}
commutes.
\end{itemize}
\end{frame}
\begin{frame}
\begin{theorem}
For any type $Y$, the map
\begin{equation*}
(\sphere{1}\to Y)\to \sum_{(y:Y)}y=y
\end{equation*}
given by $f\mapsto (\apply{f}{\baseS},\apply{\ap_f}{\loopS})$ is an equivalence.\\[1em]
The type $\sum_{(y:Y)}y=y$ is also called the \textbf{free loop space} of $Y$.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Here's how to use the universal property of $\sphere{1}$}
For any $y:Y$ equipped with $q:y=y$, there is a unique map $f:\sphere{1}\to Y$ equipped with
\begin{itemize}
\item an identification $\alpha:\apply{f}{\baseS}=y$
\item an identification $\beta$ witnessing that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\apply{f}{\baseS} \arrow[d,equals,swap,"\apply{\ap_f}{\loopS}"] \arrow[r,equals,"\alpha"] \& y \arrow[d,equals,"q"] \\
\apply{f}{\baseS} \arrow[r,swap,equals,"\alpha"] \& y
\end{tikzcd}
\end{equation*}
commutes.
\end{itemize}
\end{frame}
\begin{frame}
\begin{theorem}
There is a multiplication operation
\begin{equation*}
\mu : \sphere{1}\to(\sphere{1}\to\sphere{1})
\end{equation*}
that satisfies
\begin{align*}
\apply{\mu}{\baseS,y} & = y \\
\apply{\mu}{x,\baseS} & = x
\end{align*}
In particular, it follows that
\begin{equation*}
\apply{\mu}{\baseS,\blank} \qquad\text{and}\qquad\apply{\mu}{\blank,\baseS}
\end{equation*}
are equivalences.
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{Construction of the complex multiplication on $\sphere{1}$}
We define $\mu:\sphere{1}\to(\sphere{1}\to\sphere{1})$ by the universal property of the circle to be the unique map equipped with
\begin{itemize}
\item an identification
\begin{equation*}
\basemulcircle : \apply{\mu}{\baseS} = \idfunc
\end{equation*}
\item and an identification $\loopS\usc{}\mu$ witnessing that the square
\begin{equation*}
\begin{tikzcd}[column sep=huge,ampersand replacement=\&]
\apply{\mulcircle}{\baseS} \arrow[r,equals,"\basemulcircle"] \arrow[d,equals,swap,"\apply{\ap_{\mulcircle}}{\loopS}"] \& \idfunc \arrow[d,equals,"\apply{\eqhtpy}{\htpyidcircle}"] \\
\apply{\mulcircle}{\baseS} \arrow[r,equals,swap,"\basemulcircle"] \& \idfunc
\end{tikzcd}
\end{equation*}
where the homotopy $H:\idfunc\htpy\idfunc$ is to be defined.
\end{itemize}
\end{frame}
\begin{frame}
It remains to construct $H:\idfunc\htpy\idfunc$, i.e., a dependent function
\begin{equation*}
H:\prod_{(x:\sphere{1})}x=x.
\end{equation*}
By the dependent universal property of $\sphere{1}$ with $\apply{P}{x}:=(x=x)$, we can define $H$ to be the unique dependent function equipped with
\begin{itemize}
\item an identification $\alpha:\apply{H}{\baseS}=\loopS$.
\item an identification $\beta$ witnessing that the square
\begin{equation*}
\begin{tikzcd}[column sep=8em,ampersand replacement=\&]
\apply{\tr_{P}}{\loopS,\apply{\htpyidcircle}{\baseS}} \arrow[r,equals,"\apply{\ap_{\apply{\tr_{P}}{\loopS}}}{\basehtpyidcircle}"] \arrow[d,equals,swap,"\apply{\apd_{\htpyidcircle}}{\loopS}"] \& \apply{\tr_{P}}{\loopS,\loopS} \arrow[d,equals,"\gamma"] \\
\apply{\htpyidcircle}{\baseS} \arrow[r,equals,swap,"\basehtpyidcircle"] \& \loopS
\end{tikzcd}
\end{equation*}
where $\gamma:\apply{\tr_P}{\loopS,\loopS}=\loopS$ is to be defined.
\end{itemize}
\end{frame}
\begin{frame}
It remains to construct $\gamma:\apply{\tr_P}{\loopS,\loopS}=\loopS$.
\begin{itemize}
\item Observation: There is a function
\begin{equation*}
(p\bullet r = q \bullet p) \to (\apply{tr_P}{p,q}=r)
\end{equation*}
for any $p:\baseS=x$, $q:\baseS=\baseS$, and $r:x=x$. \\[1em]
Proof. By path induction on $p$.
\end{itemize}\pause
It follows that there is a function
\begin{equation*}
f:(\loopS\bullet\loopS = \loopS\bullet\loopS)\to (\apply{\tr_P}{\loopS,\loopS}=\loopS).
\end{equation*}
Therefore we define $\gamma:=\apply{f}{\refl}$.\hfill$\square$
\end{frame}
\begin{frame}
\frametitle{Exercises}
\begin{enumerate}
\item Let $X,Y$ be types, and define the family $P$ over $X$ by
\begin{equation*}
\apply{P}{x}:=Y.
\end{equation*}
show that
\begin{equation*}
\apply{\tr_P}{p,y}=y
\end{equation*}
for all $y:Y$ and any identification $p$ in $X$.
\item Show that $\brck{x=y}$ for any $x,y:\sphere{1}$.
\item Show that $X$ is a set if and only if the map
\begin{equation*}
(\sphere{1}\to X)\to X
\end{equation*}
given by $f\mapsto \apply{f}{\baseS}$ is an equivalence.
\item Show that multiplication on $\sphere{1}$ is commutative and associative.
\end{enumerate}
\end{frame}
\end{document}