diff --git a/theories/Sets/Ordinals.v b/theories/Sets/Ordinals.v index e976f334ac4..4c13272b018 100644 --- a/theories/Sets/Ordinals.v +++ b/theories/Sets/Ordinals.v @@ -1,6 +1,6 @@ From HoTT Require Import TruncType ExcludedMiddle Modalities.ReflectiveSubuniverse abstract_algebra. From HoTT Require Import PropResizing.PropResizing. -From HoTT Require Import HIT.quotient. +From HoTT Require Import Colimits.Quotient. (** This file contains a definition of ordinals and some fundamental results, roughly following the presentation in the HoTT book. *) @@ -806,7 +806,7 @@ Qed. (** * Ordinal limit *) Definition image@{i j} {A : Type@{i}} {B : HSet@{j}} (f : A -> B) : Type@{i} - := quotient (fun a a' : A => f a = f a'). + := Quotient (fun a a' : A => f a = f a'). Definition factor1 {A} {B : HSet} (f : A -> B) : A -> image f @@ -818,7 +818,7 @@ Lemma image_ind_prop {A} {B : HSet} (f : A -> B) -> forall x : image f, P x. Proof. intros step. - srefine (quotient_ind_prop _ _ _); intros a; cbn. + srefine (Quotient_ind_hprop _ _ _); intros a; cbn. apply step. Qed. @@ -826,21 +826,20 @@ Definition image_rec {A} {B : HSet} (f : A -> B) {C : HSet} (step : A -> C) : (forall a a', f a = f a' -> step a = step a') -> image f -> C - := quotient_rec _ step. - + := Quotient_rec _ _ step. Definition factor2 {A} {B : HSet} (f : A -> B) : image f -> B - := quotient_rec _ f (fun a a' fa_fa' => fa_fa'). + := Quotient_rec _ _ f (fun a a' fa_fa' => fa_fa'). Global Instance isinjective_factor2 `{Funext} {A} {B : HSet} (f : A -> B) : IsInjective (factor2 f). Proof. unfold IsInjective, image. - refine (quotient_ind_prop _ _ _); intros x; cbn. - refine (quotient_ind_prop _ _ _); intros y; cbn. - rapply related_classes_eq. + refine (Quotient_ind_hprop _ _ _); intros x; cbn. + refine (Quotient_ind_hprop _ _ _); intros y; cbn. + rapply qglue. Qed. @@ -862,7 +861,7 @@ Proof. + rapply image_ind_prop; intros a. cbn. intros B B_fa. apply tr. exists (factor1 f (a.1; out (bound B_fa))). cbn. - unfold lt, relation, f; cbn. + unfold lt, relation, f; simpl. assert (↓(out (bound B_fa)) = B) as ->. { rewrite (path_initial_segment_simulation out). symmetry. apply bound_property. @@ -893,7 +892,7 @@ Proof. intros a_u. apply equiv_resize_hprop in a_u. cbn in a_u. apply tr. exists (out (bound a_u)). split. + apply initial_segment_property. - + apply (injective (factor2 _)). cbn. + + apply (injective (factor2 _)); simpl. rewrite (path_initial_segment_simulation out). symmetry. apply bound_property. Qed.