-
Notifications
You must be signed in to change notification settings - Fork 3
/
closeness_twitter.py
executable file
·57 lines (42 loc) · 1.05 KB
/
closeness_twitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import pandas as pd
import numpy as np
import networkx as nx
import pickle
'''
dataset_edges = pd.read_csv('enrondatasetfinal.csv')
dataset_nodes = pd.read_csv('Enron.true', sep = ';', header = None)
node_from = dataset_edges.iloc[:,0].values
node_to = dataset_edges.iloc[:,1].values
num_nodes = len(dataset_nodes)
print num_nodes
# Creare graph
G = nx.Graph()
for i, j in zip(node_from, node_to):
G.add_edge(i, j)
'''
num_nodes = 76851
G = nx.read_graphml('twitter.graphml')
d = nx.closeness_centrality(G)
print max(d.items(), key = lambda x:x[1])
print min(d.items(), key = lambda x:x[1])
print 'Dict done'
output = open('closeness_dict.pkl', 'wb')
pickle.dump(d, output)
output.close()
'''
pkl_file = open('closeness_dict.pkl','rb')
d = pickle.load(pkl_file)
cnt = 0
for a, b in d.iteritems():
if b>0.25:
cnt += 1
print cnt
outfile = open('closeness_enron_data.txt', 'w')
for i, j in d.iteritems():
if j > 0.25:
outfile.write(str(i) + " 1\n")
else:
outfile.write(str(i) + " 0\n")
outfile.close()
pkl_file.close()
'''