-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
125 lines (102 loc) · 5.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# This code is released under the CC BY-SA 4.0 license.
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
from util.visual_validation import validation
import wandb
import torch
import copy
from models.structured_trans_model import StructuredTransModel
import monai
# Set W&B Sweep configuration
sweep_configuration = {
"method": "grid",
"name": "sweep-unest-sam",
"metric": {"goal": "maximize", "name": "val/SSIM_fake"},
"parameters": {
"fth": {"values": [0.25,0.5, 0.75]},
"depth": {"values": [3,4]},
"n_layers_D": {"values":[3,5,7]},
"structured_shape_iter": {"values": [0,50]}
}}
# Initialize sweep by passing in config
sweep_id = wandb.sweep(sweep=sweep_configuration, project = "sweep-unest-sam")
# if __name__ == '__main__':
def main():
opt = TrainOptions().parse() # get training options
if not opt.wdb_disabled:
wandb.init(project="cycle-transformer", name=opt.name)
# Overwrite parameters with wandb
opt.fth = wandb.config.fth
opt.depth = wandb.config.depth
opt.n_layers_D = wandb.config.n_layers_D
opt.structured_shape_iter = wandb.config.structured_shape_iter
# Name for the experiment to save the checkpoints
exp_name = f"unest_fth{opt.fth}_depth{opt.depth}_nld{opt.n_layers_D}_ssi{opt.structured_shape_iter}"
exp_name = exp_name.replace(".","")
opt.name = exp_name
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
val_opt = copy.deepcopy(opt)
val_opt.phase = 'val'
val_opt.serial_batches = True
val_dataset = create_dataset(val_opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations best = 0
best = 0
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1):
# outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if isinstance(model, StructuredTransModel) and total_iters > opt.structured_shape_iter:
model.gt_shape_assist = False
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.train()
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
# Validate the model
perf = validation(val_dataset, model, val_opt)
if not opt.wdb_disabled:
metrics_val = {"val/MAE_fake": perf[4], "val/MSE_fake": perf[5], "val/SSIM_fake" : perf[6], "val/PSNR_fake": perf[7]}
# Send metrics to WANDB
wandb.log(metrics_val)
# If checkpoint is better, save as best
if perf[6] > best:
print(f"Best Model with perf (SSIM) ={perf[6]}")
model.save_networks('best')
best = perf[6]
iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
model.update_learning_rate() # update learning rates in the beginning of every epoch.
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
# Initialize sweep by passing in config.
wandb.agent(sweep_id,function = main)