Skip to content

Latest commit

 

History

History
44 lines (37 loc) · 2.29 KB

README.md

File metadata and controls

44 lines (37 loc) · 2.29 KB

WhisprRec 🐼

WhisprRec is a collection of deep learning applications in recommendation algorithms. It mainly collects the mainstream recommendation models and our team's research results in recommendation systems. The framework uses pytorch. IF you find this project is valuable, please star :).

Thanks to the work of Rechorus and Recbole.

Get Started 🐌

  1. You have to install and configure the following environment: (My environment)
  • Python >= 3.8
  • Pytorch = 1.9.0
  • Pandas = 1.4.4
  • Numpy = 1.23.2
  • tqdm = 4.51.0
  1. Clone this repository:
git clone https://github.com/HeyWeCome/WhisprRec.git
  1. cd into 'src'
cd WhisprRec/src
  1. Run your or build-in dataset
python main.py --model_name BPRMF --emb_size 64 --lr 1e-3 --l2 1e-6 --dataset ml-100k

The Current Model List 🦉

In ml-100k dataset.

Model HR@10 NDCG@10 Best hyper-parameters Description
General ============ ============ ============ ============
BUIR 0.1114 0.0626 lr=5e-4 SIGIR'21
BPRMF 0.2254 0.1085 lr=1e-3 UAI'09
LightGCN 0.2292 0.1174 lr=2e-3, gcn_layers=2 SIGIR'20
SGL 0.2287 0.1187 lr=2e-3, gcn_layers=2, ssl_tau=0.1, drop_ratio=0.1, type=ED, ssl_weight=0.001 SIGIR’21
Sequential ============ ============ ============ ============
SASRec 0.3166 0.1798 lr=5e-4, sample=LS, num_layers=1, num_heads=4 ICDM‘18