-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
149 lines (107 loc) · 4.34 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch import nn
from torch.autograd import Variable
import torchvision
import torchvision.transforms as T
from torch.utils.data import DataLoader, Dataset
import argparse
import os
from models import vgg, resnet, densenet
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training', epilog='#' * 60)
parser.add_argument('--lr', default=0.1, type=float, help='learning rate, Default: 0.1', dest='lr')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint', dest='resume')
parser.add_argument('--model', '-m', type=str, help='model to use: vgg16, vgg19, \
resnet18, resnet34, resnet50, resnet101, resnet152, \
densenet121, densenet161, densenet169, densenet201', dest='model')
parser.add_argument('--gpu', default=0, type=int, help='gpu to use: 0, 1, 2, 3, 4, 5, Default: 0', dest='gpu')
parser.add_argument('--epoch', default=400, type=int, help='how many epochs, Default: 400')
parser.add_argument('--visible', type=str, help='visible gpus')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.visible
print "loading cifar10 dataset...."
T_train = T.Compose([
T.RandomCrop(32, padding=4),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
T_test = T.Compose([
T.ToTensor(),
T.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
cifar_train = torchvision.datasets.CIFAR10(root='./data', download=True, train=True, transform=T_train)
cifar_test = torchvision.datasets.CIFAR10(root='./data', download=True, train=False, transform=T_train)
cifar_train_loader = DataLoader(cifar_train, batch_size=100, shuffle=True, num_workers=10)
cifar_test_loader = DataLoader(cifar_test, batch_size=100, shuffle=False, num_workers=10)
def train(epoch, net, criterion, optim, lr_scheduler):
net.train()
lr_scheduler.step()
correct = 0
total = 0
for idx, (images, labels) in enumerate(cifar_train_loader):
optim.zero_grad()
x, y = Variable(images.cuda(args.gpu)), Variable(labels.cuda(args.gpu))
logits = net(x)
loss = criterion(logits, y)
loss.backward()
optim.step()
_, labels_pred = torch.max(logits.data, 1)
total += labels.size(0)
correct += torch.eq(labels_pred, y.data).cpu().sum()
print 'epoch: [{0:d}], loss: [{1:.4f}], acc: [{2:.4f}%]'.format(epoch, loss.data.cpu()[0], 100.*correct/total)
def test(epoch, net):
net.eval()
correct = 0
total = 0
for idx, (images, labels) in enumerate(cifar_test_loader):
x, y = Variable(images.cuda(args.gpu)), Variable(labels.cuda(args.gpu))
logits = net(x)
_, labels_pred = torch.max(logits.data, 1)
total += labels.size(0)
correct += torch.eq(labels_pred, y.data).cpu().sum()
print 'epoch: [{0:d}], acc: [{1:.4f}%]'.format(epoch, 100.*correct/total)
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(net, 'checkpoint/{}.pkl'.format(args.model))
print 'model saved...!'
def main():
if args.resume:
if not os.path.isfile('./checkpoint/{}.pkl'.format(args.model)):
raise ValueError('no models saved....!!!!')
print 'resume from checkpoint....'
net = torch.load('./checkpoint/{}.pkl'.format(args.model))
else:
if args.model == 'vgg16':
net = vgg.VGG(args.model)
elif args.model == 'vgg19':
net = vgg.VGG(args.model)
elif args.model == 'resnet18':
net = resnet.ResNet18()
elif args.model == 'resnet34':
net = resnet.ResNet34()
elif args.model == 'resnet50':
net = resnet.ResNet50()
elif args.model == 'resnet101':
net = resnet.ResNet101()
elif args.model == 'resnet152':
net = resnet.ResNet152()
elif args.model == 'densenet121':
net = densenet.DenseNet121()
elif args.model == 'densenet161':
net = densenet.DenseNet161()
elif args.model == 'densenet169':
net = densenet.DenseNet169()
elif args.model == 'densenet201':
net = densenet.DenseNet201()
else:
raise ValueError('model not implemented...!!')
net.cuda(args.gpu)
net = nn.DataParallel(net, device_ids = range(torch.cuda.device_count()))
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optim = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=100, gamma=0.1)
for e in xrange(args.epoch):
train(e, net, criterion, optim, lr_scheduler)
test(e, net)
if __name__ == '__main__':
main()