-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN Model.py
376 lines (314 loc) · 14 KB
/
CNN Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import tensorflow as tf
from tensorflow import keras
import numpy as np
import time
from matplotlib import pyplot as plt
import pandas as pd
import random
#%% select a portion of data from database
from gemmi import cif
number = []
I = []
for i in range(0, 1000000):#1667834
try:
doc = cif.read_file(".../MP_cifs_processed/mp-"+str(i)+".cif")
block = doc.sole_block()
symmetry_Int_Tables_number = block.find_value('_symmetry_Int_Tables_number')
symmetry_Int_Tables_number = int(symmetry_Int_Tables_number)
number.append(symmetry_Int_Tables_number)
I.append(i)
except:
pass
if i % 100000 == 0:
print(i)
number = np.array(number)
labels = np.empty(len(number))
labels[:] = np.NaN
# 7 crystal systems
labels[(number >= 1) & (number <= 2)] = 0
labels[(number >= 3) & (number <= 15)] = 1
labels[(number >= 16) & (number <= 74)] = 2
labels[(number >= 75) & (number <= 142)] = 3
labels[(number >= 143) & (number <= 167)] = 4
labels[(number >= 168) & (number <= 194)] = 5
labels[(number >= 195) & (number <= 230)] = 6
for label_no in range(7):
print(np.sum(labels == label_no))
I = np.array(I)
i0 = I[labels == 0]
i1 = I[labels == 1]
i2 = I[labels == 2]
i3 = I[labels == 3]
i4 = I[labels == 4]
i5 = I[labels == 5]
i6 = I[labels == 6]
train_crystal_size = 500
total_crystal_size = 1000
file_id = np.concatenate((i0[:train_crystal_size], i1[:train_crystal_size], i2[:train_crystal_size], i3[:train_crystal_size], i4[:train_crystal_size], i5[:train_crystal_size], i6[:train_crystal_size],
i0[train_crystal_size:total_crystal_size], i1[train_crystal_size:total_crystal_size], i2[train_crystal_size:total_crystal_size], i3[train_crystal_size:total_crystal_size], i4[train_crystal_size:total_crystal_size], i5[train_crystal_size:total_crystal_size], i6[train_crystal_size:total_crystal_size]))
def unit_vector(vector):
return vector / np.linalg.norm(vector)
def angle_between(v1, v2):
v1_u = unit_vector(v1)
v2_u = unit_vector(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
beam_direction_round = [[0,0,1]]
directions = []
for i in range(6):
for j in range(6):
for k in range(6):
# print([i,j,k])
angles = []
for bd in beam_direction_round:
angle = angle_between(bd, [i,j,k])
angles.append(angle)
if np.nanmin(np.asarray(angles)) > 10/180*np.pi:
beam_direction_round.append([i,j,k])
beam_direction_round = np.asarray(beam_direction_round)
beam_direction_round.shape
#%% load vector maps
points1 = []
points1_1 = []
points1_2 = []
beam_direction_size = len(beam_direction_round)
count = 0
for i_image in file_id:
count = count + 1
# print(count)
for bd in beam_direction_round[:beam_direction_size]:
data = pd.read_csv('.../ED_simulated_' +
str(bd[0]) + '_' + str(bd[1]) + '_' + str(bd[2]) +
'/mp-'+str(i_image)+'ED_conv.csv')
position = data['Position']
position = position.tolist()
position_list = []
for i in range(len(position)):
position[i] = str(position[i]).replace('[' , '' )
position[i] = str(position[i]).replace(']' , '' )
a = []
for num_str in position[i].split():
num_float = float(num_str)
a.append(num_float)
position_list.append(a)
position = np.asarray(position_list)
x = position[:,0]
y = position[:,1]
rho = np.sqrt(x**2 + y**2)
phi = np.arctan2(y, x)
intensity = data['Intensity (norm)']
intensity_list = intensity.tolist()
intensity = np.asarray(intensity)
point_array_polar = np.column_stack((rho, phi, intensity))
point_list = point_array_polar.tolist()
point_list = sorted(point_list, key=lambda x: (x[1], x[0], x[2])) # sort y-x-intensity
point_list_1 = sorted(point_list, key=lambda x: (x[0], x[1], x[2])) # sort x-y-intensity
point_list_2 = sorted(point_list, key=lambda x: (x[2], x[1], x[0])) # sort intensity-y-x
points1.append(point_list)
points1_1.append(point_list_1)
points1_2.append(point_list_2)
if count % 1000 == 0:
print(count)
for sublist in points1:
sublist[:] = sublist + [[0,0,0]] * (800 - len(sublist)) # 483
for sublist in points1_1:
sublist[:] = sublist + [[0,0,0]] * (800 - len(sublist))
for sublist in points1_2:
sublist[:] = sublist + [[0,0,0]] * (800 - len(sublist))
points1 = np.asarray(points1)
points1_1 = np.asarray(points1_1)
points1_2 = np.asarray(points1_2)
points = np.concatenate((points1, points1_1, points1_2), axis=2)
#%% Load labels
number = []
I = []
count = 0
for i in file_id:
count = count + 1
for bd in beam_direction_round[:beam_direction_size]:
doc = cif.read_file(".../MP_cifs_processed/mp-"+str(i)+".cif")
block = doc.sole_block()
symmetry_Int_Tables_number = block.find_value('_symmetry_Int_Tables_number')
symmetry_Int_Tables_number = int(symmetry_Int_Tables_number)
number.append(symmetry_Int_Tables_number)
I.append(i)
if count % 1000 == 0:
print(count)
number = np.array(number)
labels = np.empty(len(number))
labels[:] = np.NaN
# 7 crystal systems
labels[(number >= 1) & (number <= 2)] = 0
labels[(number >= 3) & (number <= 15)] = 1
labels[(number >= 16) & (number <= 74)] = 2
labels[(number >= 75) & (number <= 142)] = 3
labels[(number >= 143) & (number <= 167)] = 4
labels[(number >= 168) & (number <= 194)] = 5
labels[(number >= 195) & (number <= 230)] = 6
for label_no in range(7):
print(np.sum(labels == label_no))
training_size = train_crystal_size*7*beam_direction_size
shuffle_id = list(range(training_size))
random.Random(4).shuffle(shuffle_id)
train_points_1 = points1[shuffle_id,:,:]
train_points_2 = points1_1[shuffle_id,:,:]
train_points_3 = points1_2[shuffle_id,:,:]
train_labels = labels[shuffle_id]
test_points_1 = points1[training_size:,:,:]
test_points_2 = points1_1[training_size:,:,:]
test_points_3 = points1_2[training_size:,:,:]
test_labels = labels[training_size:]
validation_points_1 = test_points_1
validation_points_2 = test_points_2
validation_points_3 = test_points_3
validation_labels = test_labels
#%% Prepare the dataset.
batch_size = 64
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
validation_labels = tf.keras.utils.to_categorical(validation_labels)
x_train_1 = train_points_1
x_train_2 = train_points_2
x_train_3 = train_points_3
y_train = train_labels
x_val_1 = validation_points_1
x_val_2 = validation_points_2
x_val_3 = validation_points_3
y_val = validation_labels
x_test_1 = test_points_1
x_test_2 = test_points_2
x_test_3 = test_points_3
y_test = test_labels
# Prepare the training dataset.
train_dataset = tf.data.Dataset.from_tensor_slices((x_train_1, x_train_2, x_train_3, y_train))
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size)
# Prepare the validation dataset.
val_dataset = tf.data.Dataset.from_tensor_slices((x_val_1, x_val_2, x_val_3, y_val))
val_dataset = val_dataset.batch(batch_size)
#%% Build a model
np.random.seed(1234)
tf.random.set_seed(1234)
val_accuray = []
input_layer_1 = tf.keras.layers.Input(shape=(points1.shape[1], points1.shape[2]))
conv_layer1_1 = tf.keras.layers.Conv1D(32, 5, activation='relu')(input_layer_1)
conv_layer2_1 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer1_1)
conv_layer3_1 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer2_1)
conv_layer4_1 = tf.keras.layers.Conv1D(64, 3, activation='relu')(conv_layer3_1)
conv_layer5_1 = tf.keras.layers.Conv1D(256, 3, activation='relu')(conv_layer4_1)
global_pooling_layer_1 = tf.keras.layers.GlobalMaxPooling1D()(conv_layer5_1)
input_layer_2 = tf.keras.layers.Input(shape=(points1_1.shape[1], points1_1.shape[2]))
conv_layer1_2 = tf.keras.layers.Conv1D(32, 5, activation='relu')(input_layer_2)
conv_layer2_2 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer1_2)
conv_layer3_2 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer2_2)
conv_layer4_2 = tf.keras.layers.Conv1D(64, 3, activation='relu')(conv_layer3_2)
conv_layer5_2 = tf.keras.layers.Conv1D(256, 3, activation='relu')(conv_layer4_2)
global_pooling_layer_2 = tf.keras.layers.GlobalMaxPooling1D()(conv_layer5_2)
input_layer_3 = tf.keras.layers.Input(shape=(points1_2.shape[1], points1_2.shape[2]))
conv_layer1_3 = tf.keras.layers.Conv1D(32, 5, activation='relu')(input_layer_3)
conv_layer2_3 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer1_3)
conv_layer3_3 = tf.keras.layers.Conv1D(32, 3, activation='relu')(conv_layer2_3)
conv_layer4_3 = tf.keras.layers.Conv1D(64, 3, activation='relu')(conv_layer3_3)
conv_layer5_3 = tf.keras.layers.Conv1D(256, 3, activation='relu')(conv_layer4_3)
global_pooling_layer_3 = tf.keras.layers.GlobalMaxPooling1D()(conv_layer5_3)
dense_layer1 = tf.keras.layers.Dense(256, activation='relu')(tf.keras.layers.Concatenate()([global_pooling_layer_1, global_pooling_layer_2, global_pooling_layer_3]))
dense_layer2 = tf.keras.layers.Dense(128, activation='relu')(dense_layer1)
output_layer = tf.keras.layers.Dense(7)(dense_layer2)
model = tf.keras.models.Model(inputs=[input_layer_1, input_layer_2, input_layer_3], outputs=output_layer)
model.summary()
# Instantiate an optimizer.
optimizer = keras.optimizers.Adam(learning_rate=1e-3)
# convert logits to evidence
def relu_evidence(logits):
return tf.nn.relu(logits)
# loss function
K = 7 # number of classes
def KL(alpha):
beta=tf.constant(np.ones((1,K)),dtype=tf.float32)
S_alpha = tf.math.reduce_sum(alpha,axis=1,keepdims=True)
S_beta = tf.math.reduce_sum(beta,axis=1,keepdims=True)
lnB = tf.math.lgamma(S_alpha) - tf.math.reduce_sum(tf.math.lgamma(alpha),axis=1,keepdims=True)
lnB_uni = tf.math.reduce_sum(tf.math.lgamma(beta),axis=1,keepdims=True) - tf.math.lgamma(S_beta)
dg0 = tf.math.digamma(S_alpha)
dg1 = tf.math.digamma(alpha)
kl = tf.math.reduce_sum((alpha - beta)*(dg1-dg0),axis=1,keepdims=True) + lnB + lnB_uni
return kl
def mse_loss(p, logits, epoch):
logits2evidence=relu_evidence
evidence = logits2evidence(logits)
alpha = evidence + 1
S = tf.math.reduce_sum(alpha, axis=1, keepdims=True)
E = alpha - 1
m = alpha / S
A = tf.math.reduce_sum((p-m)**2, axis=1, keepdims=True)
B = tf.math.reduce_sum(alpha*(S-alpha)/(S*S*(S+1)), axis=1, keepdims=True)
annealing_step = 50
annealing_coef = tf.math.minimum(1.0,tf.cast(epoch/annealing_step,tf.float32))
alp = E*(1-p) + 1 # equivalent to alp = alpha*(1-p) + p
C = annealing_coef * KL(alp)
return tf.math.reduce_mean((A + B) + C)
# Prepare the metrics.
train_acc_metric = keras.metrics.CategoricalAccuracy()
val_acc_metric = keras.metrics.CategoricalAccuracy()
def logits2probability(logits):
logits2evidence=relu_evidence
evidence = logits2evidence(logits)
alpha = evidence + 1
S = tf.reduce_sum(alpha, axis=1, keepdims=True)
prob = alpha / S
return prob
#%% Training
@tf.function
def train_step(x1, x2, x3, y, epoch):
with tf.GradientTape() as tape:
logits = model([x1, x2, x3], training=True)
loss_value = mse_loss(y, logits, epoch)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
prob = logits2probability(logits)
train_acc_metric.update_state(y, prob)
return loss_value
@tf.function
def test_step(x1, x2, x3, y):
val_logits = model([x1, x2, x3], training=False)
val_prob = logits2probability(val_logits)
val_acc_metric.update_state(y, val_prob)
epochs = 10
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch,))
start_time = time.time()
# Iterate over the batches of the dataset.
for step, (x_batch_train_1, x_batch_train_2, x_batch_train_3, y_batch_train) in enumerate(train_dataset):
loss_value = train_step(x_batch_train_1, x_batch_train_2, x_batch_train_3, y_batch_train, epoch)
# Display metrics at the end of each epoch.
train_acc = train_acc_metric.result()
print("Training acc over epoch: %.4f" % (float(train_acc),))
# Reset training metrics at the end of each epoch
train_acc_metric.reset_states()
# Run a validation loop at the end of each epoch.
for x_batch_val_1, x_batch_val_2, x_batch_val_3, y_batch_val in val_dataset:
test_step(x_batch_val_1, x_batch_val_2, x_batch_val_3, y_batch_val)
val_acc = val_acc_metric.result()
val_acc_metric.reset_states()
print("Validation acc: %.4f" % (float(val_acc),))
model.save_weights('...'+'.h5')
#%% Prediction
logits_pred = model.predict([x_test_1, x_test_2, x_test_3])
logits2evidence=relu_evidence
evidence = logits2evidence(logits_pred)
alpha = evidence + 1
S = tf.reduce_sum(alpha, axis=1, keepdims=True)
u = K / S #uncertainty
prob = alpha / S
b = evidence / S
pred_labels = prob.numpy().argmax(axis=-1)
true_labels = y_test.argmax(axis=-1)
misclasification_id = np.where(pred_labels != true_labels)
correct_clasification_id = np.where(pred_labels == true_labels)
from sklearn.metrics import accuracy_score
accuracy_score(true_labels, pred_labels)
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(true_labels, pred_labels)
class_names = ['triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'trigonal', 'hexagonal', 'cubic']
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_names)# np.arange(32)
disp.plot(cmap=plt.cm.Blues, xticks_rotation=45, values_format = '') #, ax=ax
plt.show()