-
Notifications
You must be signed in to change notification settings - Fork 74
/
server.py
615 lines (490 loc) · 20.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#!/usr/bin/env python3
import argparse
import os
import time
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import connexion
import logging
# import umap
from flask import send_from_directory, redirect, json
import numpy as np
from sklearn.decomposition import PCA
from sklearn.manifold import MDS, TSNE
from copy import deepcopy
from s2s.lru import LRU
from s2s.project import S2SProject
from index.annoyVectorIndex import AnnoyVectorIndex
__author__ = 'Hendrik Strobelt, Sebastian Gehrmann, Alexander M. Rush'
CONFIG_FILE_NAME = 's2s.yaml'
projects = {}
cache_translate = LRU(50)
# cache_neighbors = LRU(20)
cache_compare = LRU(50)
pre_cached = []
logging.basicConfig(level=logging.INFO)
app = connexion.App(__name__)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--debug", action='store_true', help=' Debug mode')
parser.add_argument("--port", default="8080", help="Port to run the app. ")
# parser.add_argument("--nocache", default=False)
parser.add_argument("--preload", action='store_true', help="Preload indices.")
parser.add_argument("--cache", type=str, default='',
help="Preload cache from dir")
parser.add_argument("--dir", type=str,
default=os.path.abspath('data'),
help='Path to project')
# parser.add_argument('-api', type=str, default='pytorch',
# choices=['pytorch', 'lua'],
# help="""The API to use.""")
args = parser.parse_args()
print(args)
# global model
# if args.api == "pytorch":
# # model = ONMTmodelAPI("model_api/data/ende_acc_15.72_ppl_912.74_e9.pt")
# model = ONMTmodelAPI("model_api/data/ende_acc_46.86_ppl_21.19_e12.pt")
# else:
# model = ONMTLuaModelAPI()
# just a simple flask route
@app.route('/')
def hello_world():
return redirect('client/index.html')
# send everything from client as static content
@app.route('/client/<path:path>')
def send_static_client(path):
""" serves all files from ./client/ to ``/client/<path:path>``
:param path: path from api call
"""
return send_from_directory('client_dist/', path)
def closest_vector_n(index, v, r=5):
res = index.get_closest_x(v, k=100,
ignore_same_tgt=False,
include_distances=True,
use_vectors=True)
if r > 1:
res = [[(xx[0], round(xx[1])) for xx in yy] for yy in res]
return res
def project_states(vectors, p_method='pca', anchors=None):
# if p_method == 'umap':
# pm = umap.UMAP(n_neighbors=min(len(vectors), 10))
# else:
# pm = P_METHODS[p_method]
pm = P_METHODS[p_method]
anchors = None # TODO: remove fix
if anchors:
pm.fit(anchors)
return pm.transform(vectors)
else:
return pm.fit_transform(vectors)
# noinspection SpellCheckingInspection
def projection_hnlp(model, states, lengths):
v = np.array(states)
x_pos = model.predict(v)
# expected progression
y_pos_a = np.concatenate([(np.arange(1, l + 1, 1) / l) for l in lengths])
# For removing the coefficients
w = model.coef_
w = np.expand_dims(w, 1)
v_prime = v - np.dot(np.dot(v, w), w.T)
y_pos_b = (TSNE(n_components=1, init='pca').fit_transform(v_prime)) \
.flatten()
y_pos_c = (PCA(n_components=1).fit_transform(v_prime)) \
.flatten()
return x_pos.tolist(), y_pos_a.tolist(), y_pos_b.tolist(), y_pos_c.tolist()
def create_proj_list(xs, ys, traces):
res = []
for ii in range(len(xs)):
new_state = traces[ii].copy()
new_state['pos'] = [xs[ii], ys[ii]]
res.append(new_state)
return res
def all_neighbors(project, translations, neighbors, p_method='tsne'):
# pca = umap.UMAP()#TSNE(n_components=2)
nr_nn_for_projection = 20
res = {}
for neighborhood in neighbors:
n_cand = [[]]
states = []
nb_summary = {}
start_t = time.time()
for t_id, translation in translations.items():
index = project.get_index(neighborhood)
print('index-work starts..')
if index:
if neighborhood == 'encoder':
all_enc_states = list(
map(lambda x: x['state'], translation['encoder']))
states.append(all_enc_states)
closest_v = closest_vector_n(index, all_enc_states)
for e_id, enc in enumerate(translation['encoder']):
n_cand_local = closest_v[e_id]
enc['neighbors'] = n_cand_local
n_cand[0].append(
{'i': e_id, 't': t_id, 'type': 'enc',
'n': n_cand_local[:nr_nn_for_projection]})
if neighborhood == 'decoder':
all_states = list(map(lambda x: x['state'],
translation['decoder'][0]))
states.append(all_states)
closest_v = closest_vector_n(index, all_states)
bId = 0
# for beam in [translation['decoder'][0]]:
beam = translation['decoder'][0]
for d_id, dec in enumerate(beam):
n_cand_local = closest_v[d_id]
dec['neighbors'] = n_cand_local
if bId == 0:
n_cand[0].append(
{'i': d_id, 't': t_id, 'type': 'dec',
'n': n_cand_local[:nr_nn_for_projection]})
bId += 1
if neighborhood == 'context':
all_states = list(map(lambda x: x['context'],
translation['decoder'][0]))
states.append(all_states)
closest_v = closest_vector_n(index, all_states)
bId = 0
# for beam in translation['decoder']:
beam = translation['decoder'][0]
for d_id, dec in enumerate(beam):
n_cand_local = closest_v[d_id]
dec['neighbor_context'] = n_cand_local
if bId == 0:
n_cand[0].append(
{'i': d_id, 't': t_id, 'type': 'ctx',
'n': n_cand_local[:nr_nn_for_projection]})
bId += 1
for all_cand in n_cand[0]: # for now only first entry
# print(neighborhood, len(nb_summary), all_cand)
for n_cand_x in all_cand['n']:
cand_id = n_cand_x[0]
if cand_id in nb_summary:
nb_summary[cand_id]['occ'].append(
[n_cand_x[0], n_cand_x[1], all_cand['t'],
all_cand['i']])
else:
nb_summary[cand_id] = {
'id': cand_id,
'v': index.get_vector(cand_id),
'occ': [[n_cand_x[0], n_cand_x[1], all_cand['t'],
all_cand['i']]],
'pivot': None
}
nb_summary_list = list(nb_summary.values())
sentence_states = []
sentence_lengths = []
sentence_traces = []
# add the actual states as items to the space:
for t_id, t_states in enumerate(states):
sentence_lengths.append(len(t_states))
for s_id, state in enumerate(t_states):
sentence_traces.append({
'id': -10000 * (t_id + 1) + s_id,
'v': state,
'occ': [],
'pivot': {'trans_ID': t_id, 'word_ID': s_id}
})
# nb_summary_list.append({
# 'id': -10000 * (t_id + 1) + s_id,
# 'v': state,
# 'occ': [],
# 'pivot': {'trans_ID': t_id, 'word_ID': s_id}
# })
sentence_states.append(state)
nb_summary_list = nb_summary_list + sentence_traces
#
print('index-time:', str(time.time() - start_t))
start_t = time.time()
positions = project_states([x['v'] for x in nb_summary_list],
p_method, anchors=sentence_states)
for i in range(len(positions)):
nb_summary_list[i]['pos'] = positions[i].tolist()
# nb_summary_list[i]['v']
if project.project_model:
x_pos, y_pos_a, y_pos_b, y_pos_c = projection_hnlp(
project.project_model,
sentence_states,
sentence_lengths)
res[neighborhood + '_a'] = create_proj_list(x_pos, y_pos_a,
sentence_traces)
res[neighborhood + '_b'] = create_proj_list(x_pos, y_pos_b,
sentence_traces)
res[neighborhood + '_c'] = create_proj_list(x_pos, y_pos_c,
sentence_traces)
print('proj-time:', str(time.time() - start_t))
#
res[neighborhood] = nb_summary_list
# if 'encoder' in res and 'context' in res:
# enc_dec_states = list(map(lambda x: deepcopy(x),
# filter(lambda xx: xx['pivot'] is not None,
# res['encoder'])))
# all_decoder_list = list(map(lambda x: deepcopy(x),
# filter(lambda xx: xx['pivot'] is not None,
# res['context'])))
#
# for dec in all_decoder_list:
# dec['pivot']['trans_ID'] = 1
# enc_dec_states.append(dec)
#
# ed_pos = project_states([x['v'] for x in enc_dec_states], 'mds')
# for i in range(len(ed_pos)):
# enc_dec_states[i]['pos'] = ed_pos[i].tolist()
#
# res['enc_ctx'] = enc_dec_states
for _, nb in res.items():
for nbb in nb:
del nbb['v']
# nbb['v'] = list(map(lambda x: float(x), list(nbb['v'])))
return res
def translate(project, in_sentences, partial=[], attn_overwrite=[]):
model = project.model
translations = {}
for transID, in_sentence in enumerate(in_sentences):
par = partial[transID] if (transID < len(partial)) else []
par = [par] if len(par) else []
print(transID, in_sentence, par)
translations[transID] = model.translate(in_text=[in_sentence],
partial_decode=par,
attn_overwrite=attn_overwrite)[
0]
tgt_dict = project.dicts['i2t']['tgt']
for _, trans in translations.items():
for tk in trans['beam']:
for lbeam in tk:
lbeam['word'] = tgt_dict.get(lbeam['pred'], '??')
trans['beam_trace_words'] = []
for b_level in trans['beam_trace']:
level_collect = []
for b_trace in b_level:
trace_collect = []
for w_id in b_trace:
trace_collect.append(tgt_dict.get(w_id, '??'))
level_collect.append(trace_collect)
trans['beam_trace_words'].append(level_collect)
return translations
# ------ API routing as defined in swagger.yaml (connexion)
def get_translation(**request):
current_project = list(projects.values())[0] # type: S2SProject
in_sentence = request['in']
neighbors = request.get('neighbors', [''])
partials = request.get('partial', [''])
force_attn = request.get('force_attn', [''])
# Make empty lists empty:
partials = [] if partials == [''] else partials
neighbors = [] if neighbors == [''] else neighbors
force_attn = [] if force_attn == [''] else force_attn
attn_overwrite = []
if force_attn:
att = {}
is_key = True
key = None
for v in force_attn:
if is_key:
key = v
else:
att[key] = v
is_key = not is_key
attn_overwrite.append(att)
translation_id = in_sentence + str(partials) + str(force_attn)
translations = cache_translate.get(translation_id)
if not translations:
translations = translate(current_project, [in_sentence],
partial=partials,
attn_overwrite=attn_overwrite)
cache_translate.add(translation_id, translations)
res = translations[0]
if len(neighbors) > 0:
# neighbor_id = in_sentence + str(partials) + str(force_attn) + str(
# neighbors)
# all_n = cache_neighbors.get(neighbor_id)
if 'allNeighbors' not in res:
res['allNeighbors'] = all_neighbors(current_project, translations,
neighbors)
# cache_neighbors.add(neighbor_id, all_n)
# res['allNeighbors'] = all_n
res['request'] = request
return res
def get_translation_compare(**request):
current_project = list(projects.values())[0]
in_sentence = request['in']
compare_sentence = request['compare']
neighbors = request.get('neighbors', [])
neighbors = [] if neighbors == [''] else neighbors
key = in_sentence + ' VS ' + compare_sentence + str(neighbors)
res = cache_compare.get(key)
if res:
return res
translations = translate(current_project, [in_sentence, compare_sentence])
res = {'in': translations[0], 'compare': translations[1]}
if len(neighbors) > 0:
all_n = all_neighbors(current_project, translations, neighbors)
res['neighbors'] = all_n
cache_compare.add(key, res)
return res
def extract_sentence(x):
return ' '.join(
map(lambda y: y['token'], x['decoder'][0]))
def extract_attn(x):
return np.array(x['attn'][0])
# def compare_translation(**request):
# pivot = request["in"]
# compare = request["compare"]
# neighbors = request.get('neighbors', [])
#
# current_project = list(projects.values())[0]
# model = current_project.model
#
# # trans_all = model.translate(in_text=[pivot]+compare)
#
# pivot_res = translate(current_project, [pivot])[0]
# pivot_attn = extract_attn(pivot_res)
# pivot_attn_l = pivot_attn.shape[0]
#
# # compare.append(pivot)
# compare_t = translate(current_project, compare)
#
# res = []
# index_orig = 0
# for cc_t_key in compare_t:
# # cc_t = model.translate(in_text=[cc])[0]
# cc_t = compare_t[cc_t_key]
# cc_attn = extract_attn(cc_t)
# dist = 10
# if cc_attn.shape[0] > 0:
# max_0 = max(cc_attn.shape[0], pivot_attn.shape[0])
# max_1 = max(cc_attn.shape[1], pivot_attn.shape[1])
#
# cc__a = np.zeros(shape=(max_0, max_1))
# cc__a[:cc_attn.shape[0], :cc_attn.shape[1]] = cc_attn
#
# cc__b = np.zeros(shape=(max_0, max_1))
# cc__b[:pivot_attn.shape[0], :pivot_attn.shape[1]] = pivot_attn
#
# dist = np.linalg.norm(cc__a - cc__b)
#
# res.append({
# "sentence": extract_sentence(cc_t),
# "attn": extract_attn(cc_t).tolist(),
# "attn_padding": (cc__a - cc__b).tolist(),
# "orig": compare[index_orig],
# "dist": dist
# })
# index_orig += 1
#
# return {"compare": res, "pivot": extract_sentence(pivot_res)}
P_METHODS = {
"pca": PCA(n_components=2, ),
"mds": MDS(),
"tsne": TSNE(init='pca'),
# 'umap': umap.UMAP(metric='cosine'),
"none": lambda x: x
}
def get_close_words(**request):
current_project = list(projects.values())[0] # type: S2SProject
loc = request['loc'] # "src" or "tgt"
limit = request['limit']
p_method = request["p_method"]
t2i = current_project.dicts['t2i'][loc]
i2t = current_project.dicts['i2t'][loc]
if loc == 'src':
embeddings = current_project.embeddings[
'encoder'] # TODO: change !!
else:
embeddings = current_project.embeddings['decoder']
word = request['in']
my_vec = embeddings[t2i[word]]
matrix = embeddings[:]
matrix_norms = current_project.cached_norm(loc, matrix)
dotted = matrix.dot(my_vec)
vector_norm = np.sqrt(np.sum(my_vec * my_vec))
matrix_vector_norms = np.multiply(matrix_norms, vector_norm)
neighbors = np.divide(dotted, matrix_vector_norms)
neighbour_ids = np.argsort(neighbors)[-limit:].tolist()
names = [i2t[x] for x in neighbour_ids]
# projection methods: MDS, PCA, tSNE -- all with standard params
positions = []
if p_method != "none":
positions = P_METHODS[p_method].fit_transform(
matrix[neighbour_ids, :])
return {'word': names,
# 'word_vector': matrix[neighbour_ids, :].tolist(),
'score': neighbors[neighbour_ids].tolist(),
'pos': positions.tolist()
}
def get_neighbor_details(**request):
current_project = list(projects.values())[0]
indices = request['indices']
index = current_project.get_index(
request["vector_name"]) # type: AnnoyVectorIndex
return index.get_details(indices)
def get_info(**request):
if 'project_id' not in request:
current_project = list(projects.values())[0] # type: S2SProject
res = current_project.info()
res['pre_cached'] = pre_cached
return res
return request
def get_close_vectors(**request):
current_project = list(projects.values())[0] # type: S2SProject
# os.path.join(current_project.directory, request["vector_name"] + ".ann")
index = current_project.get_index(
request["vector_name"]) # type: AnnoyVectorIndex
closest = index.get_closest_x(request["indices"],
include_distances=True)
# print(request["vector_name"], request['index'])
return closest
def train_data_for_index(**request):
ids = request["indices"]
loc = request["loc"]
current_project = list(projects.values())[0] # type: S2SProject
res = current_project.get_train_for_index(ids, loc)
return {'loc': loc, 'ids': ids, 'res': res}
def find_and_load_project(directory):
"""
searches for CONFIG_FILE_NAME in all subdirectories of directory
and creates data handlers for all of them
:param directory: scan directory
:return: null
"""
project_dirs = []
for root, dirs, files in os.walk(directory):
if CONFIG_FILE_NAME in files:
project_dirs.append(os.path.abspath(root))
i = 0
for p_dir in project_dirs:
dh_id = os.path.split(p_dir)[1]
cf = os.path.join(p_dir, CONFIG_FILE_NAME)
p = S2SProject(directory=p_dir, config_file=cf)
if args.preload:
p.preload_indices(['encoder', 'decoder'])
projects[dh_id] = p
i += 1
app.add_api('swagger.yaml')
def preload_cache(cache):
if len(cache) > 0 and os.path.exists(cache):
all_files = [os.path.join(cache, f) for f in os.listdir(cache) if
os.path.isfile(os.path.join(cache, f))]
for file in all_files:
if file.endswith('.json'):
with open(file, 'r') as f:
a = json.load(f)
print(a['request'])
request = a['request']
neighbors = request.get('neighbors', [''])
partials = request.get('partial', [''])
force_attn = request.get('force_attn', [''])
# Make empty lists empty:
partials = [] if partials == [''] else partials
neighbors = [] if neighbors == [''] else neighbors
force_attn = [] if force_attn == [''] else force_attn
translation_id = request['in'] + str(partials) + str(
force_attn)
cache_translate.preload(translation_id, [a])
pre_cached.append(request)
if __name__ == '__main__':
args = parser.parse_args()
app.run(port=int(args.port), debug=args.debug, host="0.0.0.0")
else:
args, _ = parser.parse_known_args()
find_and_load_project(args.dir)
preload_cache(args.cache)