-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathOpenAI.FineTuning.pas
686 lines (617 loc) · 24 KB
/
OpenAI.FineTuning.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
unit OpenAI.FineTuning;
interface
uses
System.Generics.Collections, Rest.Json, System.JSON.Types, OpenAI.API,
System.SysUtils, OpenAI.API.Params;
type
THyperparameters = class
private
FN_epochs: string;
FLearning_rate_multiplier: Extended;
FBatch_size: Int64;
public
/// <summary>
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
/// "Auto" decides the optimal number of epochs based on the size of the dataset.
/// If setting the number manually, we support any number between 1 and 50 epochs.
/// </summary>
property NEpochs: string read FN_epochs write FN_epochs;
property BatchSize: Int64 read FBatch_size write FBatch_size;
property LearningRateMultiplier: Extended read FLearning_rate_multiplier write FLearning_rate_multiplier;
end;
TFTError = class
private
FCode: string;
FMessage: string;
FParam: string;
public
/// <summary>
/// A machine-readable error code.
/// </summary>
property Code: string read FCode write FCode;
/// <summary>
/// A human-readable error message.
/// </summary>
property Message: string read FMessage write FMessage;
/// <summary>
/// The parameter that was invalid, usually training_file or validation_file.
/// This field will be null if the failure was not parameter-specific.
/// </summary>
property Param: string read FParam write FParam;
end;
TFTMetrics = class
private
[JsonNameAttribute('step')]
FStep: Extended;
[JsonNameAttribute('train_loss')]
FTrainLoss: Extended;
[JsonNameAttribute('train_mean_token_accuracy')]
FTrainMeanTokenAccuracy: Extended;
[JsonNameAttribute('valid_loss')]
FValidLoss: Extended;
[JsonNameAttribute('valid_mean_token_accuracy')]
FValidMeanTokenAccuracy: Extended;
[JsonNameAttribute('full_valid_loss')]
FFullValidLoss: Extended;
[JsonNameAttribute('full_valid_mean_token_accuracy')]
FFullValidMeanTokenAccuracy: Extended;
public
property Step: Extended read FStep write FStep;
property TrainLoss: Extended read FTrainLoss write FTrainLoss;
property TrainMeanTokenAccuracy: Extended read FTrainMeanTokenAccuracy write FTrainMeanTokenAccuracy;
property ValidLoss: Extended read FValidLoss write FValidLoss;
property ValidMeanTokenAccuracy: Extended read FValidMeanTokenAccuracy write FValidMeanTokenAccuracy;
property FullValidLoss: Extended read FFullValidLoss write FFullValidLoss;
property FullValidMeanTokenAccuracy: Extended read FFullValidMeanTokenAccuracy write FFullValidMeanTokenAccuracy;
end;
TFTCheckPoint = class
private
[JsonNameAttribute('object')]
FObject: string;
[JsonNameAttribute('id')]
FId: string;
[JsonNameAttribute('created_at')]
FCreatedAt: Int64;
[JsonNameAttribute('fine_tuned_model_checkpoint')]
FFineTunedModelCheckpoint: string;
[JsonNameAttribute('fine_tuning_job_id')]
FFineTuningJobId: string;
[JsonNameAttribute('metrics')]
FMetrics: TFTMetrics;
[JsonNameAttribute('step_number')]
FStepNumber: Int64;
public
/// <summary>
/// The object type, which is always "fine_tuning.job.checkpoint".
/// </summary>
property &Object: string read FObject write FObject;
/// <summary>
/// The checkpoint identifier, which can be referenced in the API endpoints.
/// </summary>
property Id: string read FId write FId;
/// <summary>
/// The Unix timestamp (in seconds) for when the checkpoint was created.
/// </summary>
property CreatedAt: Int64 read FCreatedAt write FCreatedAt;
/// <summary>
/// The name of the fine-tuned checkpoint model that is created.
/// </summary>
property FineTunedModelCheckpoint: string read FFineTunedModelCheckpoint write FFineTunedModelCheckpoint;
/// <summary>
/// The name of the fine-tuning job that this checkpoint was created from.
/// </summary>
property FineTuningJobId: string read FFineTuningJobId write FFineTuningJobId;
/// <summary>
/// Metrics at the step number during the fine-tuning job.
/// </summary>
property Metrics: TFTMetrics read FMetrics write FMetrics;
/// <summary>
/// The step number that the checkpoint was created at.
/// </summary>
property StepNumber: Int64 read FStepNumber write FStepNumber;
destructor Destroy; override;
end;
TFTCheckPoints = class
private
FObject: string;
FData: TArray<TFTCheckPoint>;
public
property &Object: string read FObject write FObject;
property Data: TArray<TFTCheckPoint> read FData write FData;
destructor Destroy; override;
end;
TFTWandb = class
private
FName: string;
FProject: string;
FTags: TArray<string>;
FEntity: string;
public
/// <summary>
/// The name of the project that the new run will be created under.
/// </summary>
property Project: string read FProject write FProject;
/// <summary>
/// A display name to set for the run. If not set, we will use the Job ID as the name.
/// </summary>
property Name: string read FName write FName;
/// <summary>
/// The entity to use for the run. This allows you to set the team or username of the WandB user
/// that you would like associated with the run. If not set, the default entity for the registered WandB API key is used.
/// </summary>
property Entity: string read FEntity write FEntity;
/// <summary>
/// A list of tags to be attached to the newly created run. These tags are passed through directly to WandB.
/// Some default tags are generated by OpenAI: "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
/// </summary>
property Tags: TArray<string> read FTags write FTags;
end;
TFTIntegration = class
private
FType: string;
FWandb: TFTWandb;
public
/// <summary>
/// The type of the integration being enabled for the fine-tuning job
/// </summary>
property &Type: string read FType write FType;
/// <summary>
/// The settings for your integration with Weights and Biases.
/// This payload specifies the project that metrics will be sent to.
/// Optionally, you can set an explicit display name for your run, add tags to your run,
/// and set a default entity (team, username, etc) to be associated with your run.
/// </summary>
property Wandb: TFTWandb read FWandb write FWandb;
destructor Destroy; override;
end;
TFTIntegrations = TArray<TFTIntegration>;
/// <summary>
/// The fine-tuning job object
/// </summary>
TFineTuningJob = class
private
FCreated_at: Int64;
FFine_tuned_model: string;
FFinished_at: Int64;
FHyperparameters: THyperparameters;
FId: string;
FModel: string;
FObject: string;
FOrganization_id: string;
FResult_files: TArray<string>;
FStatus: string;
FTrained_tokens: Int64;
FTraining_file: string;
FValidation_file: string;
FError: TFTError;
FSeed: Int64;
FEstimated_finish: Int64;
FIntegrations: TFTIntegrations;
public
/// <summary>
/// The Unix timestamp (in seconds) for when the fine-tuning job was created.
/// </summary>
property CreatedAt: Int64 read FCreated_at write FCreated_at;
/// <summary>
/// The name of the fine-tuned model that is being created.
/// The value will be null if the fine-tuning job is still running.
/// </summary>
property FineTunedModel: string read FFine_tuned_model write FFine_tuned_model;
/// <summary>
/// The Unix timestamp (in seconds) for when the fine-tuning job was finished.
/// The value will be null if the fine-tuning job is still running.
/// </summary>
property FinishedAt: Int64 read FFinished_at write FFinished_at;
/// <summary>
/// The hyperparameters used for the fine-tuning job. See the fine-tuning guide for more details.
/// </summary>
property Hyperparameters: THyperparameters read FHyperparameters write FHyperparameters;
/// <summary>
/// The object identifier, which can be referenced in the API endpoints.
/// </summary>
property Id: string read FId write FId;
/// <summary>
/// The base model that is being fine-tuned.
/// </summary>
property Model: string read FModel write FModel;
/// <summary>
/// The object type, which is always "fine_tuning.job".
/// </summary>
property &Object: string read FObject write FObject;
/// <summary>
/// The organization that owns the fine-tuning job.
/// </summary>
property OrganizationId: string read FOrganization_id write FOrganization_id;
/// <summary>
/// The compiled results file ID(s) for the fine-tuning job. You can retrieve the results with the
/// </summary>
property ResultFiles: TArray<string> read FResult_files write FResult_files;
/// <summary>
/// The current status of the fine-tuning job, which can be either created, pending, running, succeeded, failed, or cancelled.
/// </summary>
property Status: string read FStatus write FStatus;
/// <summary>
/// The total number of billable tokens processed by this fine-tuning job.
/// The value will be null if the fine-tuning job is still running.
/// </summary>
property TrainedTokens: Int64 read FTrained_tokens write FTrained_tokens;
/// <summary>
/// The file ID used for training. You can retrieve the training data with the Files API.
/// </summary>
property TrainingFile: string read FTraining_file write FTraining_file;
/// <summary>
/// The file ID used for validation. You can retrieve the validation results with the Files API.
/// </summary>
property ValidationFile: string read FValidation_file write FValidation_file;
/// <summary>
/// For fine-tuning jobs that have failed, this will contain more information on the cause of the failure.
/// </summary>
property Error: TFTError read FError write FError;
/// <summary>
/// The seed used for the fine-tuning job.
/// </summary>
property Seed: Int64 read FSeed write FSeed;
/// <summary>
/// A list of integrations to enable for this fine-tuning job.
/// </summary>
property Integrations: TFTIntegrations read FIntegrations write FIntegrations;
/// <summary>
/// The Unix timestamp (in seconds) for when the fine-tuning job is estimated to finish.
/// The value will be null if the fine-tuning job is not running.
/// </summary>
property EstimatedFinish: Int64 read FEstimated_finish write FEstimated_finish;
destructor Destroy; override;
end;
TFineTiningEventData = class
private
FStep: Integer;
FTrain_loss: Extended;
FTrain_mean_token_accuracy: Extended;
public
property Step: Integer read FStep write FStep;
property TrainLoss: Extended read FTrain_loss write FTrain_loss;
property TrainMeanTokenAccuracy: Extended read FTrain_mean_token_accuracy write FTrain_mean_token_accuracy;
end;
TFineTuningEvent = class
private
FCreated_at: Int64;
FData: TFineTiningEventData;
FId: string;
FLevel: string;
FMessage: string;
FObject: string;
FType: string;
public
property CreatedAt: Int64 read FCreated_at write FCreated_at;
property Data: TFineTiningEventData read FData write FData;
property Id: string read FId write FId;
/// <summary>
/// info, warn
/// </summary>
property Level: string read FLevel write FLevel;
property Message: string read FMessage write FMessage;
property &Object: string read FObject write FObject;
/// <summary>
/// message, metrics
/// </summary>
property &Type: string read FType write FType;
destructor Destroy; override;
end;
TFineTuningJobs = class
private
FObject: string;
FData: TArray<TFineTuningJob>;
FHas_more: Boolean;
public
property &Object: string read FObject write FObject;
property Data: TArray<TFineTuningJob> read FData write FData;
property HasMore: Boolean read FHas_more write FHas_more;
destructor Destroy; override;
end;
TFineTuningJobEvents = class
private
FObject: string;
FData: TArray<TFineTuningEvent>;
FHas_more: Boolean;
public
property &Object: string read FObject write FObject;
property Data: TArray<TFineTuningEvent> read FData write FData;
property HasMore: Boolean read FHas_more write FHas_more;
destructor Destroy; override;
end;
TFineTuningHyperParams = class(TJSONParam)
/// <summary>
/// Number of examples in each batch. A larger batch size means that model parameters are updated less frequently,
/// but with lower variance.
/// </summary>
function BatchSize(const Value: Int64): TFineTuningHyperParams;
/// <summary>
/// Scaling factor for the learning rate. A smaller learning rate may be useful to avoid overfitting.
/// </summary>
function LearningRateMultiplier(const Value: Extended): TFineTuningHyperParams;
/// <summary>
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
/// </summary>
function NEpochs(const Value: Int64): TFineTuningHyperParams;
end;
TFineTuningWandbParams = class(TJSONParam)
/// <summary>
/// Required
/// The name of the project that the new run will be created under.
/// </summary>
function Project(const Value: string): TFineTuningWandbParams;
/// <summary>
/// Optional
/// A display name to set for the run. If not set, we will use the Job ID as the name.
/// </summary>
function Name(const Value: string): TFineTuningWandbParams;
/// <summary>
/// Optional
/// The entity to use for the run. This allows you to set the team or username of the WandB user
/// that you would like associated with the run. If not set, the default entity for the registered WandB API key is used.
/// </summary>
function Entity(const Value: string): TFineTuningWandbParams;
/// <summary>
/// Optional
/// A list of tags to be attached to the newly created run.
/// These tags are passed through directly to WandB. Some default tags are generated by OpenAI:
/// "openai/finetune", "openai/{base-model}", "openai/{ftjob-abcdef}".
/// </summary>
function Tags(const Value: TArray<string>): TFineTuningWandbParams;
end;
TFineTuningIntegrationParams = class(TJSONParam)
/// <summary>
/// The type of integration to enable. Currently, only "wandb" (Weights and Biases) is supported.
/// </summary>
function &Type(const Value: string): TFineTuningIntegrationParams;
/// <summary>
/// The settings for your integration with Weights and Biases.
/// This payload specifies the project that metrics will be sent to.
/// Optionally, you can set an explicit display name for your run, add tags to your run,
/// and set a default entity (team, username, etc) to be associated with your run.
/// </summary>
function Wandb(const Value: TFineTuningWandbParams): TFineTuningIntegrationParams;
end;
TFineTuningCreateParams = class(TJSONParam)
/// <summary>
/// Required.
/// The ID of an uploaded file that contains training data.
/// Your dataset must be formatted as a JSONL file. Additionally, you must upload your file with the purpose fine-tune.
/// </summary>
function TrainingFile(const Value: string): TFineTuningCreateParams;
/// <summary>
/// The ID of an uploaded file that contains validation data.
/// If you provide this file, the data is used to generate validation metrics periodically during fine-tuning.
/// These metrics can be viewed in the fine-tuning results file.
/// The same data should not be present in both train and validation files.
/// Your dataset must be formatted as a JSONL file. You must upload your file with the purpose fine-tune.
/// </summary>
function ValidationFile(const Value: string): TFineTuningCreateParams;
/// <summary>
/// Required.
/// The name of the model to fine-tune. You can select one of the supported models.
/// </summary>
function Model(const Value: string): TFineTuningCreateParams;
/// <summary>
/// The hyperparameters used for the fine-tuning job.
/// </summary>
/// <param name="NEpochs">
/// The number of epochs to train the model for. An epoch refers to one full cycle through the training dataset.
/// </param>
function Hyperparameters(const Value: TFineTuningHyperParams): TFineTuningCreateParams;
/// <summary>
/// A string of up to 64 characters that will be added to your fine-tuned model name.
/// For example, a suffix of "custom-model-name" would produce a model name
/// like ft:gpt-4o-mini:openai:custom-model-name:7p4lURel.
/// </summary>
function Suffix(const Value: string): TFineTuningCreateParams;
/// <summary>
/// A list of integrations to enable for your fine-tuning job.
/// </summary>
function Integrations(const Value: TFineTuningIntegrationParams): TFineTuningCreateParams;
/// <summary>
/// The seed controls the reproducibility of the job. Passing in the same seed and job parameters should produce
/// the same results, but may differ in rare cases. If a seed is not specified, one will be generated for you.
/// </summary>
function Seed(const Value: Int64): TFineTuningCreateParams;
end;
TFineTuningListParams = class(TJSONParam)
/// <summary>
/// Identifier for the last job from the previous pagination request.
/// </summary>
function After(const Value: string): TFineTuningListParams;
/// <summary>
/// Number of fine-tuning jobs to retrieve. Defaults to 20.
/// </summary>
function Limit(const Value: Integer): TFineTuningListParams;
end;
TFineTuningRoute = class(TOpenAIAPIRoute)
public
/// <summary>
/// Creates a job that fine-tunes a specified model from a given dataset.
/// Response includes details of the enqueued job including job status and the name of the fine-tuned models once complete.
/// </summary>
function Create(ParamProc: TProc<TFineTuningCreateParams>): TFineTuningJob;
/// <summary>
/// List your organization's fine-tuning jobs
/// </summary>
function List(ParamProc: TProc<TFineTuningListParams> = nil): TFineTuningJobs;
/// <summary>
/// Get info about a fine-tuning job.
/// </summary>
function Retrieve(const FineTuningJobId: string): TFineTuningJob;
/// <summary>
/// Immediately cancel a fine-tune job.
/// </summary>
function Cancel(const FineTuningJobId: string): TFineTuningJob;
/// <summary>
/// Get status updates for a fine-tuning job.
/// </summary>
function ListEvents(const FineTuningJobId: string; ParamProc: TProc<TFineTuningListParams> = nil): TFineTuningJobEvents;
/// <summary>
/// List checkpoints for a fine-tuning job.
/// </summary>
function ListCheckpoints(const FineTuningJobId: string; ParamProc: TProc<TFineTuningListParams> = nil): TFTCheckPoints;
end;
implementation
uses
System.JSON;
{ TFineTuningJob }
destructor TFineTuningJob.Destroy;
var
Item: TFTIntegration;
begin
FHyperparameters.Free;
FError.Free;
for Item in FIntegrations do
Item.Free;
inherited;
end;
{ TFineTuningCreateParams }
function TFineTuningCreateParams.Hyperparameters(const Value: TFineTuningHyperParams): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('hyperparameters', Value));
end;
function TFineTuningCreateParams.Integrations(const Value: TFineTuningIntegrationParams): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('integrations', Value));
end;
function TFineTuningCreateParams.Model(const Value: string): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('model', Value));
end;
function TFineTuningCreateParams.Seed(const Value: Int64): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('seed', Value));
end;
function TFineTuningCreateParams.Suffix(const Value: string): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('suffix', Value));
end;
function TFineTuningCreateParams.TrainingFile(const Value: string): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('training_file', Value));
end;
function TFineTuningCreateParams.ValidationFile(const Value: string): TFineTuningCreateParams;
begin
Result := TFineTuningCreateParams(Add('validation_file', Value));
end;
{ TFineTuningRoute }
function TFineTuningRoute.Cancel(const FineTuningJobId: string): TFineTuningJob;
begin
Result := API.Post<TFineTuningJob>('fine_tuning/jobs/' + FineTuningJobId + '/cancel');
end;
function TFineTuningRoute.Create(ParamProc: TProc<TFineTuningCreateParams>): TFineTuningJob;
begin
Result := API.Post<TFineTuningJob, TFineTuningCreateParams>('fine_tuning/jobs', ParamProc);
end;
function TFineTuningRoute.List(ParamProc: TProc<TFineTuningListParams>): TFineTuningJobs;
begin
Result := API.Get<TFineTuningJobs, TFineTuningListParams>('fine_tuning/jobs', ParamProc);
end;
function TFineTuningRoute.ListCheckpoints(const FineTuningJobId: string; ParamProc: TProc<TFineTuningListParams>): TFTCheckPoints;
begin
Result := API.Get<TFTCheckPoints, TFineTuningListParams>('fine_tuning/jobs/' + FineTuningJobId + '/checkpoints', ParamProc);
end;
function TFineTuningRoute.ListEvents(const FineTuningJobId: string; ParamProc: TProc<TFineTuningListParams>): TFineTuningJobEvents;
begin
Result := API.Get<TFineTuningJobEvents, TFineTuningListParams>('fine_tuning/jobs/' + FineTuningJobId + '/events', ParamProc);
end;
function TFineTuningRoute.Retrieve(const FineTuningJobId: string): TFineTuningJob;
begin
Result := API.Get<TFineTuningJob>('fine_tuning/jobs/' + FineTuningJobId);
end;
{ TFineTuningJobs }
destructor TFineTuningJobs.Destroy;
var
Item: TFineTuningJob;
begin
for Item in FData do
Item.Free;
inherited;
end;
{ TFineTuningListParams }
function TFineTuningListParams.After(const Value: string): TFineTuningListParams;
begin
Result := TFineTuningListParams(Add('after', Value));
end;
function TFineTuningListParams.Limit(const Value: Integer): TFineTuningListParams;
begin
Result := TFineTuningListParams(Add('limit', Value));
end;
{ TFineTuningEvent }
destructor TFineTuningEvent.Destroy;
begin
FData.Free;
inherited;
end;
{ TFineTuningJobEvents }
destructor TFineTuningJobEvents.Destroy;
var
Item: TFineTuningEvent;
begin
for Item in FData do
Item.Free;
inherited;
end;
{ TFineTuningHyperParams }
function TFineTuningHyperParams.BatchSize(const Value: Int64): TFineTuningHyperParams;
begin
Result := TFineTuningHyperParams(Add('batch_size', Value));
end;
function TFineTuningHyperParams.LearningRateMultiplier(const Value: Extended): TFineTuningHyperParams;
begin
Result := TFineTuningHyperParams(Add('learning_rate_multiplier', Value));
end;
function TFineTuningHyperParams.NEpochs(const Value: Int64): TFineTuningHyperParams;
begin
Result := TFineTuningHyperParams(Add('n_epochs', Value));
end;
{ TFineTuningIntegrationParams }
function TFineTuningIntegrationParams.&Type(const Value: string): TFineTuningIntegrationParams;
begin
Result := TFineTuningIntegrationParams(Add('type', Value));
end;
function TFineTuningIntegrationParams.Wandb(const Value: TFineTuningWandbParams): TFineTuningIntegrationParams;
begin
Result := TFineTuningIntegrationParams(Add('wandb', Value));
end;
{ TFineTuningWandbParams }
function TFineTuningWandbParams.Entity(const Value: string): TFineTuningWandbParams;
begin
Result := TFineTuningWandbParams(Add('entity', Value));
end;
function TFineTuningWandbParams.Name(const Value: string): TFineTuningWandbParams;
begin
Result := TFineTuningWandbParams(Add('name', Value));
end;
function TFineTuningWandbParams.Project(const Value: string): TFineTuningWandbParams;
begin
Result := TFineTuningWandbParams(Add('project', Value));
end;
function TFineTuningWandbParams.Tags(const Value: TArray<string>): TFineTuningWandbParams;
begin
Result := TFineTuningWandbParams(Add('tags', Value));
end;
{ TFTIntegration }
destructor TFTIntegration.Destroy;
begin
FWandb.Free;
inherited;
end;
{ TFTCheckPoint }
destructor TFTCheckPoint.Destroy;
begin
FMetrics.Free;
inherited;
end;
{ TFTCheckPoints }
destructor TFTCheckPoints.Destroy;
var
Item: TFTCheckPoint;
begin
for Item in FData do
Item.Free;
inherited;
end;
end.