-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path279.perfect-squares-recursion.c
71 lines (57 loc) · 1.24 KB
/
279.perfect-squares-recursion.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/**
279. Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.
Example 1:
Input: n = 12
Output: 3
Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13
Output: 2
Explanation: 13 = 4 + 9.
*/
// gcc 279.perfect-squares-recursion.c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define SIZE 1024
int intCompar(const void *a, const void *b)
{
return (*(int *)a - *(int *)b);
}
int findMinNum(int n)
{
int squareNums[SIZE];
int tmp = (int)sqrt((double)n);
int realSize = tmp + 1;
for (int i = 1; i <= realSize; ++i)
{
squareNums[i - 1] = i * i;
}
int *isNInNums = bsearch(&n, squareNums, realSize, sizeof(int), intCompar);
if (isNInNums != NULL)
{
return 1;
}
int minNum = 65535;
for (int i = 0; i < realSize; ++i)
{
int square = squareNums[i];
if (n < square)
break;
int newNum = findMinNum(n - square) + 1;
minNum = MIN(newNum, minNum);
}
return minNum;
}
int numSquares(int n)
{
return findMinNum(n);
}
int main()
{
int res = numSquares(17);
printf("res: %d\n", res);
return 0;
}