-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
number_of_divisors.c
67 lines (58 loc) · 1.55 KB
/
number_of_divisors.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
Given a Number. Find it's Number of Divisors.
The Number can be big such as 10^6 to 10^9
So, If we do this in O(N) we will get Time Limit Exceeded [TLE]
Better Approach is run a loop till sqrt(Number)
Example square root of 10^9 is 31622 (approx), so iteration optimized a lot.
*/
#include <stdio.h>
#include <math.h>
// this get_number_of_divisors will count the number of divisors of the number
int get_number_of_divisors(int Number)
{
int number_of_divisors = 0, i = 0;
int limit = (int) sqrt(Number);
for(i = 1; i < limit; i++)
{
if(Number % i == 0)
{
/* Here i is a divisor of that number
( Number / i ) is also a divisor
*/
number_of_divisors += 2;
}
}
if(Number % limit == 0)
{
if(limit * limit == Number)
{
//means perfect square number
number_of_divisors++;
}
else
{
number_of_divisors += 2;
}
}
return number_of_divisors;
}
int main()
{
printf("Enter the number : \n");
int Number;
scanf("%lld", &Number);
int number_of_divisors = get_number_of_divisors(Number);
printf("Number of Divisors of this Number is : ");
printf("%d\n", number_of_divisors);
}
/*
Standard Input and Output
Enter the number :
1000000000
Number of Divisors of this Number is : 100
Enter the number :
4567323
Number of Divisors of this Number is : 16
Time Complexity : O( sqrt(N) )
Space Complexity : O( 1 )
*/