-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Pronic_numbers.c
62 lines (49 loc) · 1.42 KB
/
Pronic_numbers.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/*
A pronic number is a number which is the product of two consecutive integers.
Such as 2=2*1 (2 and 1 are consecutive numbers)
12=4*3
This program will print the pronic numbers in the given range.
*/
#include <stdio.h>
#include<math.h>
/* Function to check whether number is pronic or not
A number is pronic if the root of equation i^2+i-num=0 is real and integer.*/
int is_pronic(int num){
int dis=1+4*num,root;
if(dis<=0)
return 0;
else{
root=floor(sqrt(dis));
if(root*root==dis && dis%2==1)
return 1;
else
return 0;
}
}
int main(){
int ll,hl,i;
printf("Enter the range for which you want to print PRONIC NUMBERS:\n");
printf("Enter lower limit:");
scanf("%d",&ll);
printf("Enter higher limit:");
scanf("%d",&hl);
//Printing pronic numbers in given range
printf("PRONIC NUMBERS from %d to %d are:\n",ll,hl);
for(i=ll;i<=hl;i++){
if(is_pronic(i))
printf("%d ",i);
}
}
/*
Sample Input/Output:
Input:
Enter the range for which you want to print PRONIC NUMBERS:
Enter lower limit:1
Enter higher limit:1000
Output:
PRONIC NUMBERS from 1 to 1000 are:
2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812 870 930 992
Time Complexity:O(n) where n is total numbers in range.
Time Complexity of is_pronic()=O(1)
Space Complexity:O(1)
*/