-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Extended_Euclidean_Algorithm.c
58 lines (44 loc) · 1.21 KB
/
Extended_Euclidean_Algorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/* Extended Euclidean Algorithm
GCD of two numbers is the largest number that divides both of them.
A simple way to find GCD is to factorize both numbers and multiply
common factors.
GCD(a,b) = ax + by
If we can find the value of x and y then we can easily find the
value of GCD(a,b) by replacing (x,y) with their respective values.
*/
#include <stdio.h>
int extendedGCD(int a, int b, int *x, int *y)
{
//base case
if (a == 0)
{
*x = 0;
*y = 0;
return b;
}
int x1, y1;
//recursive call
int ans = extendedGCD(b % a, a, &x1, &y1);
//Update x and y using results of recursive call
*x = y1 - (b/a) * x1;
*y = x1;
return ans;
}
//Driver Code
int main()
{
int x, y, a, b;
printf("Enter the values of a and b : ");
scanf("%d %d", &a, &b);
int gextnd = extendedGCD(a, b, &x, &y);
printf("\nGCD using Extended Euclidean algorithm is: %d ", gextnd);
return 0;
}
/*
Time Complexity : O(log(max(A, B)))
Sample I/O :
Input :
Enter the values of a and b : 55 10
Output :
GCD using Extended Euclidean algorithm is: 5
*/