-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathAVL_tree.c
379 lines (361 loc) · 10.1 KB
/
AVL_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
AVL tree is basically a self-balancing binary search tree in which the balancing factor
i.e difference between the height of left-subtree and right-subtrees is either 0 or 1 or -1
(not more than one). If the balance factor is disturbed then we need to rotate the nodes
to maintain the balance factor.
*/
#include<stdio.h>
#include<stdlib.h>
/*Structure of the AVL Tree*/
struct node
{
int info;
struct node *left,*right;
int height;
};
/*Function to perform in-order traversal of the tree*/
void inorder(struct node* root)
{
if(root==NULL)
return;
inorder(root->left);
printf("%d ",root->info);
inorder(root->right);
}
/*Function to perform pre-order traversal of the tree*/
void preorder(struct node* root)
{
if(root==NULL)
return;
printf("%d ",root->info);
preorder(root->left);
preorder(root->right);
}
/*Function to perform post-order traversal of the tree*/
void postorder(struct node* root)
{
if(root==NULL)
return;
preorder(root->left);
preorder(root->right);
printf("%d ",root->info);
}
/*Function to height of the tree*/
int height(struct node *root)
{
if(root==NULL)
return 0;
else
return root->height;
}
/*Function to calculate maximum of two given numbers*/
int max(int a,int b)
{
return(a>b)?a:b;
}
/*Function that returns tree-node after left-left rotation*/
struct node* LLrotation(struct node *root)
{
struct node *p1; //for adjustments
struct node *p2;
p1=root; //A
p2=root->left; //B
p1->left=p2->right; //A->left = B->right;
p2->right=p1; //B->right = A;
return p2; //new pointer i.e. B
}
/*Function that returns tree-node after right-right rotation*/
struct node* RRrotation(struct node *root)
{
struct node *p1; //for adjustments
struct node *p2;
p1=root; //A
p2=root->right; //B
p1->right=p2->left; //A->right = B->left;
p2->left=p1; //B->left = A;
return p2; //new pointer i.e. B
}
/*Function that returns tree-node after left-right rotation*/
struct node* LRrotation(struct node *root)
{
struct node *p1;
struct node *p2;
struct node *p3;
p1=root; //A
p2=root->left; //B
p3=root->left->right; //C
p2->right=p3->left; //B->right = C->left
p1->left=p3->right; //A->left = C->right
p3->right=p1; //C->right = A
p3->left=p2; //C->left = B
return p3; //C is the new root
}
/*Function that returns tree-node after right-left rotation*/
struct node* RLrotation(struct node *root)
{
struct node *p1;
struct node *p2;
struct node *p3;
p1=root; //A
p2=root->right; //B
p3=root->right->left; //C
p1->right=p3->left; //A->right = C->left
p2->left=p3->right; //B->left = C->right
p3->right=p2; //C->right = B
p3->left=p1; //C->left =
return p3; //C is the new root
}
/*Function to calculate height of particular node*/
int nodeheight(struct node* root)
{
if(root && root->left)
{
if(root->left->height > root->right->height)
return (root->left->height+1);
}
else if(root && root->right)
{
if(root->right->height > root->left->height)
return (root->right->height+1);
}
}
/*Function to calculate Balance Factor of particular node*/
int BalanceFactor(struct node* root)
{
if(root==NULL)
return 0;
else
return(height(root->left)-height(root->right));
}
/*Function that returns a new node with the given node*/
struct node* create(int data)
{
struct node *newnode=(struct node*)malloc(sizeof(struct node));
newnode->info=data;
newnode->left=NULL;
newnode->right=NULL;
newnode->height=1;
return newnode;
}
/*Function for the insertion of node in the AVL tree*/
struct node* AVLinsertion(struct node* root, int data)
{
if(root == NULL)
{
root=create(data);
return root;
}
else if(data < root->info)
root->left=AVLinsertion(root->left, data);
else
root->right=AVLinsertion(root->right, data);
//node's height will be max of (l-height,r-height) + 1
root->height=(max(height(root->left), height(root->right))+1);
//Insertion is done now conditions for rotation if needed.
if(BalanceFactor(root)==2 && BalanceFactor(root->left)==1)
return LLrotation(root);
if(BalanceFactor(root)==2 && BalanceFactor(root->left)==-1)
return LRrotation(root);
if(BalanceFactor(root)==-2 && BalanceFactor(root->right)==-1)
return RRrotation(root);
if(BalanceFactor(root)==-2 && BalanceFactor(root->right)==1)
return RLrotation(root);
return root;
}
/*Function to calculate the minimum value node*/
struct node* minimumnode(struct node *root)
{
if(root==NULL)
return NULL;
if(root->left==NULL)
return root;
else
minimumnode(root->left);
}
/*Function to calculate the maximum value node*/
struct node* maximumnode(struct node *root)
{
if(root==NULL)
return NULL;
if(root->right==NULL)
return root;
else
maximumnode(root->right);
}
/*Function to delete a particular node*/
struct node* deleteelement(struct node *root, int data)
{
if(root==NULL)
return root;
if(data < root->info)
root->left=deleteelement(root->left , data);
else if(data > root->info)
root->right=deleteelement(root->right , data);
else
{
if(root->left!=NULL && root->right!=NULL)
{
struct node* temp=minimumnode(root->right);
root->info=temp->info;
root->right=deleteelement(root->right , temp->info);
}
else if(root->left!=NULL)
return(root->left);
else if(root->right!=NULL)
return(root->right);
else //both left and left is null
return NULL;
}
if(root==NULL)
return root;
root->height=1+(max(height(root->left), height(root->right)));
if(BalanceFactor(root)==2 && BalanceFactor(root->left)==1)
return LLrotation(root);
else if(BalanceFactor(root)==2 && BalanceFactor(root->left)==-1)
return LRrotation(root);
else if(BalanceFactor(root)==-2 && BalanceFactor(root->right)==-1)
return RRrotation(root);
else if(BalanceFactor(root)==-2 && BalanceFactor(root->right)==1)
return RLrotation(root);
return root;
}
/*Function to check if the given tree is AVL or not*/
int checkAVL(struct node* root)
{
if(root==NULL)
return 1;
int left=checkAVL(root->left);
int right=checkAVL(root->right);
if(BalanceFactor(root)>=-1 && BalanceFactor(root)<=1)
return 1;
return 0;
}
/*Driver Program*/
int main()
{
struct node *root=NULL;
int data,choice;
while(1)
{
printf("\n1. Insertion");
printf("\n2. Deletion");
printf("\n3. Traversal");
printf("\n4. Check for AVL");
printf("\n5. EXIT");
printf("\nENTER CHOICE : ");
scanf("%d",&choice);
switch(choice)
{
case 1:
{
while(1)
{
printf("\nEnter element or press -1 : ");
scanf("%d",&data);
if(data==-1)
break;
else
root=AVLinsertion(root, data);
}
break;
}
case 2:
{
printf("\nEnter element to be deleted : ");
scanf("%d",&data);
deleteelement(root, data);
break;
}
case 3:
{
printf("\nPre-order traversal of the tree formed is : ");
preorder(root);
printf("\nIn-order traversal of the tree formed is : ");
inorder(root);
printf("\nPost-order traversal of the tree formed is : ");
postorder(root);
break;
}
case 4:
{
if(checkAVL(root)==1)
printf("\nTree is AVL");
else
printf("\nTree is not AVL");
break;
}
case 5:
{
exit(0);
break;
}
default:
printf("\nINVALID CHOICE\n");
}
}
return 0;
}
/*
Sample Input/Output:
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 1
Enter element or press -1 : 15
Enter element or press -1 : 10
Enter element or press -1 : 20
Enter element or press -1 : -1
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 3
Pre-order traversal of the tree formed is : 15 10 20
In-order traversal of the tree formed is : 10 15 20
Post-order traversal of the tree formed is : 10 20 15
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 4
Tree is AVL
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 2
Enter element to be deleted : 10
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 3
Pre-order traversal of the tree formed is : 15 20
In-order traversal of the tree formed is : 15 20
Post-order traversal of the tree formed is : 20 15
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 4
Tree is AVL
1. Insertion
2. Deletion
3. Traversal
4. Check for AVL
5. EXIT
ENTER CHOICE : 5
Time Complexity :
Insertion - O(logn)
Deletion - O(logn)
Traversal- O(n)
CheckAVL - O(1)
Space Complexity : O(n)
*/