-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Max_Sub_SquareMatrixwithAll_1s.c
87 lines (79 loc) · 2.21 KB
/
Max_Sub_SquareMatrixwithAll_1s.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// C code for Maximum size square sub-matrix with all 1's
#include<stdio.h>
int main() {
int r_size, c_size, mat[r_size][c_size], MaxSub[r_size][c_size];
printf("Input --> \n");
printf("Enter the row-size :\n");
scanf("%d", & r_size);
printf("Enter the column-size :\n");
scanf("%d", & c_size);
printf("Enter the elements of matrix :\n");
for (int i = 0; i < r_size; i++) {
for (int j = 0; j < c_size; j++) {
scanf("%d", & mat[i][j]);
}
}
/* Set first column of MaxSub[][]*/
for (int i = 0; i < r_size; i++)
MaxSub[i][0] = mat[i][0];
/* Set first row of MaxSub[][]*/
for (int j = 0; j < c_size; j++)
MaxSub[0][j] = mat[0][j];
/* Construct other entries of MaxSub[][]*/
for (int i = 1; i < r_size; i++) {
for (int j = 1; j < c_size; j++) {
if (mat[i][j] == 1) {
int m;
/* To get minimum of three values */
m = MaxSub[i][j - 1];
if (m > MaxSub[i - 1][j])
m = MaxSub[i - 1][j];
if (m > MaxSub[i - 1][j - 1])
m = MaxSub[i - 1][j - 1];
MaxSub[i][j] = m + 1;
} else
MaxSub[i][j] = 0;
}
}
/* Find the maximum entry, and indexes of maximum entry
in MaxSub[][] */
int max_of_subMat = MaxSub[0][0], max_i = 0, max_j = 0;
for (int i = 0; i < r_size; i++) {
for (int j = 0; j < c_size; j++) {
if (max_of_subMat < MaxSub[i][j]) {
max_of_subMat = MaxSub[i][j];
max_i = i;
max_j = j;
}
}
}
printf("Output -->\n");
printf("Maximum square sub-matrix is: \n");
int size = 0;
for (int i = max_i; i > max_i - max_of_subMat; i--) {
for (int j = max_j; j > max_j - max_of_subMat; j--) {
printf("%d ", mat[i][j]);
}
printf("\n");
size++;
}
printf("Size of max SubSquareMatrix : ");
printf("%d", size);
return 0;
}
/*
Input -->
Enter the row-size : 3
Enter the column-size : 4
Enter the elemnts of matrix :
1 0 1 1
0 1 1 1
0 0 1 1
Output -->
Maximum square sub-matrix is:
1 1
1 1
Size of max SubSquareMatrix : 2
Time Complexity: O(m*n) where m is number of rows and n is number of columns in the given matrix.
Auxiliary Space: O(m*n) where m is number of rows and n is number of columns in the given matrix.
*/