-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Check_for_balanced_parenthesis.cpp
115 lines (102 loc) · 2.36 KB
/
Check_for_balanced_parenthesis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
Check for balanced parenthesis
==============================
Given an expression containing parenthesis, check if it is well-formed or balanced.
A balanced parenthesis means for every opening bracket there must be equivalent closing brackets.
Application: Stack data structure
Author: @gargvader
Edit by: @Mohim-Singla
*/
#include <iostream>
#include <stack>
#include <string>
using namespace std;
// function to check if brackets are balanced
bool areBracketsBalanced(string expr)
{
stack<char> s;
char x;
// Traversing the Expression
for (int i = 0; i < expr.length(); i++)
{
if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{')
{
// Push the element in the stack
s.push(expr[i]);
continue;
}
// IF current current character is not opening
// bracket, then it must be closing. So stack
// cannot be empty at this point.
if (s.empty())
return false;
switch (expr[i])
{
case ')':
// Store the top element in a
x = s.top();
s.pop();
if (x == '{' || x == '[')
return false;
break;
case '}':
// Store the top element in b
x = s.top();
s.pop();
if (x == '(' || x == '[')
return false;
break;
case ']':
// Store the top element in c
x = s.top();
s.pop();
if (x == '(' || x == '{')
return false;
break;
}
}
// Check Empty Stack
return (s.empty());
}
// Driver code
int main()
{
string expr;
cout << "Enter a expression " << endl;
cin >> expr;
// Function call
if (areBracketsBalanced(expr))
cout << "Balanced Parenthesis";
else
cout << "Unbalanced Parenthesis";
return 0;
}
/*
-------------------------------
Test case 1:
Input:
((a+b)+(c-d+f))
Output:
Balanced Parenthesis
-------------------------------
Test case 2:
Input:
{(a+b)+(c-d+f)]}
Output:
Unbalanced Parenthesis
---------------------------------
Test case 3:
Input:
(a+b)*{c*[a+b*(c+d)}]
Output:
Unbalanced Parenthesis
--------------------------------
Test case 3:
Input:
(){}
Output:
Balanced Parenthesis
--------------------------------
Time Complexity: O(n)
Space Complexity: O(n)
*/