-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Unbounded_Binary_Search.cpp
64 lines (53 loc) · 1.42 KB
/
Unbounded_Binary_Search.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
Given a function ‘int f(unsigned int x)’ which takes a non-negative integer ‘x’
as input and returns an integer as output. The function is monotonically increasing
with respect to value of x, i.e., the value of f(x+1) is greater than f(x) for every
input x. Find the value ‘n’ where f() becomes positive for the first time.
Since f() is monotonically increasing, values of f(n+1), f(n+2),… must be positive and
values of f(n-2), f(n-3), .. must be negative.
*/
#include<bits/stdc++.h>
using namespace std;
int binarySearch(int low, int high);
// Let's take an example function
// f(x) = x^2 - 10*x - 20
int function(int x)
{
return (x*x - 10*x - 20);
}
int findFirstPositive()
{
if (function(0) > 0)
return 0;
int i = 1;
while (function(i) <= 0)
i = i*2;
return binarySearch(i/2, i);
}
int binarySearch(int low, int high)
{
if (high >= low)
{
int mid = low + (high - low)/2;
if (function(mid) > 0 && (mid == low || function(mid-1) <= 0))
return mid;
if (function(mid) <= 0)
return binarySearch((mid + 1), high);
else
return binarySearch(low, (mid -1));
}
return -1;
}
/* Driver code */
int main()
{
cout<<"The value n where function() becomes positive first is "<< findFirstPositive();
return 0;
}
/*
SAMPLE OUTPUT:
Input : x^2 - 10*x - 20
Output : The value n where function() becomes positive first is 12
Time Conplexity:O(log n)
Space Complexity:O(1)
*/