-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Maximum_Width_BinaryTree.cpp
158 lines (122 loc) · 3.39 KB
/
Maximum_Width_BinaryTree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// C++ Program to find Maximum Width of Binary Tree
#include <bits/stdc++.h>
#include <string.h>
using namespace std;
struct Node
{
int data;
Node* left;
Node* right;
};
// function to create a new Tree Node
Node* newNode(int val)
{
Node* temp = new Node;
temp->data = val;
temp->left = NULL;
temp->right = NULL;
return temp;
}
// Function to Build Tree
Node* buildTree(string str)
{
// Corner Case
if(str.length() == 0 || str[0] == 'N')
return NULL;
// Creating vector of strings from input
// string after spliting by space
vector<string> v;
istringstream iss(str);
for(string str; iss >> str; )
v.push_back(str);
// Create the root of the tree
Node* root = newNode(stoi(v[0]));
// Push the root to the queue
queue<Node*> queue;
queue.push(root);
// Starting from the second element
int i = 1;
while(!queue.empty() && i < v.size()) {
// Get and remove the front of the queue
Node* currNode = queue.front();
queue.pop();
// Get the current node's value from the string
string currVal = v[i];
// If the left child is not null
if(currVal != "N") {
// Create the left child for the current node
currNode->left = newNode(stoi(currVal));
// Push it to the queue
queue.push(currNode->left);
}
// For the right child
i++;
if(i >= v.size())
break;
currVal = v[i];
// If the right child is not null
if(currVal != "N") {
// Create the right child for the current node
currNode->right = newNode(stoi(currVal));
// Push it to the queue
queue.push(currNode->right);
}
i++;
}
return root;
}
/* Function to get the maximum width of a binary tree*/
// follows level order traversal
int getMaxWidth(Node* root)
{
int i,count,res=0;
if(root == NULL) // If root is NULL
return 0;
//Create queue of nodes
queue<Node*>q;
// Pushing root in queue
q.push(root);
while(q.empty()==false)
{
// Count size of queue
count=q.size();
// Calculate maximum width
res=max(res,count);
for(i=0;i<count;i++)
{
// Get and remove the front of the queue
Node *curr = q.front();
q.pop();
// If the left child is not null
if(curr->left!=NULL)
{
// Push it to the queue
q.push(curr->left);
}
// If the right child is not null
if(curr->right!=NULL)
{
// Push it to the queue
q.push(curr->right);
}
}
}
return res;
}
int main()
{
string s;
getline(cin, s);
Node* root = buildTree(s);
// maximum width
cout << getMaxWidth(root);
return 0;
}
/* Test Cases
Input: 1 2 3 4 5 6 7
Output: 4
Input: 1 2 3 N N 4 6 N 5 N N 7 N
Output: 2
Time Complexity: O(N) where N is the total number of nodes in the tree.
Space Complexity: O(w) where w is the maximum width of the tree.
*/