-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathMaximum_Element_of_Binary_Tree.cpp
189 lines (159 loc) · 4.96 KB
/
Maximum_Element_of_Binary_Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
Introduction
Given a Binary Tree , Print the value of maximum node key
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
A function which returns the maximum element
If the root is NULL it prints -1
*/
// Code / Solution
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
// Function to create a node with 'value' as the data stored in it.
// Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
//Interlink all created nodes to create a tree
//Use two pointers using int to store indexes
//One to keep track of parent node and one for children nodes
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
//Connect the two children nodes to parent node
//First left and then right nodes
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Function to return maximum value of root key of the given tree
int FindMax(struct Node* root)
{
// If root is NULL , return -1
if (root == NULL)
return -1;
//Initialise a maximum variable with -1 value
// keep track of it traversing the tree in Pre Order Fashion
int maximum=-1;
// Create an empty stack and push root to it
stack<struct Node*> stack;
while (1)
{
while(root)
{
//keep visiting left branch , untill we reach extreme left node
//During each visit , keep updating the maximum value
maximum=max(maximum,root->key);
stack.push(root);
root=root->left;
}
if(stack.empty())
break;
// Now consider the most recently visited node
root=stack.top();
stack.pop();
//and run Pre Order traversal for its right child
root=root->right;
//repeat the process till there are no more nodes left
}
return maximum;
}
// Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
vector<int>v(n);
cout<<"Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
cin>>v[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root=createTree(v);
//Call the function and print the result
cout<<"The maximum value of the node key of given tree is "<<FindMax(root);
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case 1
Input Binary Tree :
10
/ \
11 12
/ \ / \
5 NULL 6 13
/ \ / \ / \ / \
4 NULL NULL NULL 8 9 10 NULL
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
10 11 12 5 -1 6 13 4 -1 -1 -1 8 9 10 -1
Output Format :
Example : ( Output to the above input example )
The maximum value of the node key of given tree is 13
Sample Test Case 2
Input Binary Tree :
12
/ \
9 17
/ \ / \
8 10 15 18
/ \ / \ / \ / \
7 NULL NULL NULL 14 16 NULL 20
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
12 9 17 8 10 15 18 7 -1 -1 -1 14 16 -1 20
Output Format :
Example : ( Output to the above input example )
The maximum value of the node key of given tree is 20
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes
Space Complexity : O(n)
Where n is the no.of nodes
*/