-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Invert_Binary_Tree.cpp
176 lines (150 loc) · 4.42 KB
/
Invert_Binary_Tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
Introduction
Given a Binary Tree , invert it and print its Levelorder
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
Level Order of inverted tree is printed as output
*/
// Code / Solution
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
//Function to create a node with 'value' as the data stored in it.
//Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
//Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
//Interlink all created nodes to create a tree
//Use two pointers using int to store indexes
//One to keep track of parent node and one for children nodes
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
//Connect the two children nodes to parent node
//First left and then right nodes
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Function to print Level order traversal of given tree
void levelOrder(struct Node* root)
{
//If root is NULL , return it
if (root == NULL)
return;
//Create a queue
queue<Node*> q;
//Push the root to the queue
q.push(root);
while (!q.empty())
{
//For each node we visit ,
//Print its value , push their children if they exist
//Pop it . Repeat this process till queue becomes empty
cout << q.front()->key << " ";
if (q.front()->left != NULL)
q.push(q.front()->left);
if (q.front()->right != NULL)
q.push(q.front()->right);
q.pop();
}
}
//Invert the given tree
void Invert(struct Node* node)
{
//If the node is NULL , return it
if (node == NULL)
return;
else
{
struct Node* temp;
// recursively invert the subtrees
Invert(node->left);
Invert(node->right);
// swap the pointers in this node */
swap(node->left,node->right);
}
}
//Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
vector<int>v(n);
cout<<"Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
cin>>v[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root=createTree(v);
Invert(root);
// Print Level order and inorder traversals of inverted tree
cout << "Level order traversal of the inverted tree is : ";
levelOrder(root);
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case
Input Binary Tree : Output Inverted Binary Tree:
1 1
/ \ / \
2 3 3 2
/ \ / \ / \ / \
4 NULL 5 6 6 5 NULL 4
/ \ / \ / \ / \ / \ / \ / \ / \
7 NULL NULL NULL 8 9 10 NULL NULL 10 9 8 NULL NULL NULL 7
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
1 2 3 4 -1 5 6 7 -1 -1 -1 8 9 10 -1
Output Format :
Example : ( Output to the above input example )
Level order traversal of the inverted tree is : 1 3 2 6 5 4 10 9 8 7
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes
Space Complexity : O(n)
Where n is the no.of nodes
*/