-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Binary_Tree_Kth_Smallest_Element.cpp
180 lines (158 loc) · 4.54 KB
/
Binary_Tree_Kth_Smallest_Element.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/*
Introduction
Given a Binary Tree , Find its k th smallest element
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken in level order form
Incase of a null node , -1 is taken as input
Function to find and return kth smallest element
*/
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
// Function to create a node with 'value' as the data stored in it.
// Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to build tree with given input
struct Node* createTree(vector<int>v)
{
int n=v.size();
if(n==0)
return NULL;
vector<struct Node* >a(n);
//Create a vector of individual nodes with given node values
for(int i=0;i<n;i++)
{
//If the data is -1 , create a null node
if(v[i]==-1)
a[i] = NULL;
else
a[i] = newNode(v[i]);
}
//Interlink all created nodes to create a tree
//Use two pointers using int to store indexes
//One to keep track of parent node and one for children nodes
for(int i=0,j=1;j<n;i++)
{
//If the parent node is NULL , advance children pointer twice
if(!a[i])
{
j=j+2;
continue;
}
//Connect the two children nodes to parent node
//First left and then right nodes
a[i]->left = a[j++];
if(j<n)
a[i]->right = a[j++];
}
return a[0];
}
//Traverse all nodes of a tree in level order fashion
// and maintain k smallest elements
int kthSmallest(struct Node* root,int k)
{
// If root is NULL , return -1
if (root == NULL)
return -1;
//Store and maintain k smallest elements of tree
priority_queue<int>heap;
// Create an queue
queue<struct Node*> q;
//Enqueue the root node and a null node to indicate a level is completed
q.push(root);
while (!q.empty())
{
//Traverse each node
//If it is a null node , pop it and continue
if(q.front()==NULL)
{
q.pop();
continue;
}
//else update heap
heap.push(q.front()->key);
//if heap's size exceed k ,
//pop the top element
if(heap.size()>k)
heap.pop();
//Enqueue node's children , if they exist
if(q.front()->left)
q.push(q.front()->left);
if(q.front()->right)
q.push(q.front()->right);
q.pop();
}
//If no.of nodes of tree is less than k , return -1
//else return kth smallest element
if(heap.size()<k)
return -1;
else
return heap.top();
}
// Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
vector<int>v(n);
cout<<"Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
cin>>v[i]; //store the input values in a vector
}
//create the tree using input node values
struct Node* root=createTree(v);
int k;
cout<<"Enter the value of k : ";
cin>>k;
//Call the function and print the result
int answer=kthSmallest(root,k);
if (answer==-1)
cout<<"Given Tree has less than k nodes for given value of k";
else
cout<<"Hence the kth smallest value of Tree for given value of k is "<<answer;
return 0;
}
/*
Input:
0 <= node->key < 1000000000
if node is NULL , -1 is entered as it's key
Sample Test Case 1
Input Binary Tree :
1
/ \
2 11
/ \ / \
3 5 12 13
/ \ / \ / \ / \
4 NULL 6 7 8 9 NULL 4
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 15
Enter value of each node of the tree in level order ( if a node is NULL , enter -1 ) with spaces
1 2 11 3 5 12 13 4 -1 6 7 8 9 -1 4
Enter the value of k : 2
Output Format :
Example : ( Output to the above input example )
Hence the kth smallest value of Tree for given value of k is 2
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes
Space Complexity : O(n)
Where n is the no.of nodes
*/