-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathunbounded_knapsack.cpp
68 lines (60 loc) · 1.75 KB
/
unbounded_knapsack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
* Finding the maximum value of the items that can be popacked into the knapsack if it is possible to take one item multiple times
* DYNAMIC PROGRAMMING
* Time Complexity O(n^2)
**/
#include <bits/stdc++.h>
using namespace std;
int unboundedKnap(int w[], int v[], int W, int n)
{
//table
int t[n + 1][W + 1];
/*Base conditions
If the number of items in the knapsack is zero, then the value of the items taht can be packed is zero
If the weight of the knapsack is zero, then the value of the items taht can be packed into the knapsack will be zero too*/
for (int i = 0; i < n + 1; i++)
{
for (int j = 0; j < W + 1; j++)
{
if (i == 0 || j == 0)
t[i][j] = 0;
}
}
/*-->If the weight of the ith item is less than the weight of the knapsack, then we can either include the item or exclude it depending upon which will maximise the value
-->If included then we can include it again
-->If not included once then it is not included again
-->If the weight is greater than the weight of the knapsack then we cannot include it into the knapsack at any time
*/
for (int i = 1; i < n + 1; i++)
{
for (int j = 1; j < W + 1; j++)
{
if (w[i - 1] <= j)
t[i][j] = max(v[i - 1] + t[i][j - w[i - 1]], t[i - 1][j]);
if (w[i - 1] > j)
t[i][j] = t[i - 1][j];
}
}
return t[n][W];
}
//Driver code
int main()
{
int W;
cin >> W;
int n;
cin >> n;
int v[n], w[n];
for (int i = 0; i < n; i++)
cin >> w[i] >> v[i];
cout << unboundedKnap(w, v, W, n) << "\n";
}
/*
* EXAMPLE
* INPUT
* W=10
* n=5
* w[n] = 2 4 6 7 8
* v[n] = 10 20 30 40 100
* OUTPUT- 100
*/