-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Shamir_Secret_Sharing.cpp
197 lines (173 loc) · 5.61 KB
/
Shamir_Secret_Sharing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/* Shamir's Secret Sharing algorithm:
* Generates a specified number of shares
* where putting together a fixed number of
* a subset of those shares reveals an encoded
* secret value.
*/
#include<iostream>
#include<vector>
#include<map>
#include<random>
#include<type_traits>
using namespace std;
// Chosen RNG engine: mersenne twister
mt19937 rng;
// Global seed for chosen RNG engine
mt19937::result_type seed_val;
/* Initialise chosen RNG with seed value that is
* entropy taken from system's entropy source
* (generally /dev/urandom on Linux).
*/
void rng_init() {
random_device rand_dev;
seed_val = rand_dev();
rng.seed(seed_val);
}
/* Populate a vector with specified number
* of random natural numbers generated by chosen RNG.
*/
vector<unsigned> gen_rand_uints(unsigned num) {
rng_init();
// Use random values from a uniform distribution
uniform_int_distribution<unsigned> uint_dist;
vector<unsigned> rand_ints;
for (unsigned i = 0; i < num; i++) {
rand_ints.push_back(uint_dist(rng));
}
return rand_ints;
}
/* Generate a map from share number to share value for
* Shamir's Secret Sharing algorithm, using the specified
* secret natural number that is to be protected.
*
* The shares are a set of points which map from values of
* x to values of f(x), where f(x) is a polynomial of
* degree (min_shares - 1), and f(0) = secret.
*/
map<unsigned, unsigned> sss_gen_shares(unsigned min_shares, unsigned max_shares, unsigned secret) {
vector<unsigned> poly_coeffs = gen_rand_uints(min_shares - 1);
map<unsigned, unsigned> shares;
for (unsigned x = 1; x <= max_shares; x++) {
unsigned y = secret; // f(0)
for (unsigned i = 1; i <= poly_coeffs.size(); i++) {
unsigned term = poly_coeffs[i] * unsigned(pow(x, i));
y += term;
}
shares[x] = y;
}
return shares;
}
/* Recover the secret encoded by Shamir's Secret Sharing
* algorithm given a map of share number to share value.
* The secret is given by f(0), which can be calculated
* using any (min_shares - 1) points out of the total
* (max_shares) points available.
*
* Taking min_shares = k, max_shares = n,
* f(0) is calculated from (x_1, y_1), (x_2, y_2), ..., (x_k, y_k)
* by using Lagrange polynomials to find the constant term given by
* sum{i=0 to k-1} (y_i * (product{j=0 to k-1, i != j} (x_j/(x_j - x_i))))
*/
unsigned sss_recover_secret(const map<unsigned, unsigned>& shares) {
double sum_of_terms = 0.0;
for (auto i : shares) {
unsigned temp_numerator = 1;
int temp_denominator = 1; // int, since negative values possible
for (auto j : shares) {
if (i != j) {
unsigned x_i = i.first;
unsigned x_j = j.first;
temp_numerator *= x_j;
temp_denominator *= x_j - x_i;
}
}
unsigned y_i = i.second;
double term = double(y_i * temp_numerator) / temp_denominator;
sum_of_terms += term;
}
unsigned secret = round(sum_of_terms);
return secret;
}
int main() {
unsigned min_shares;
/* Less than 3 shares is impractical for security purposes,
* since the constant term of the polynomial can then
* be easily calculated.
*/
do {
cout << "Enter minimum number of shares to unlock secret (at least three): ";
cin >> min_shares;
} while (min_shares < 3);
unsigned max_shares;
do {
cout << "Enter total number of shares to generate (not less than the minimum): ";
cin >> max_shares;
} while (max_shares < min_shares);
unsigned secret;
/* Beyond 1E9, the recovered secret key comes out incorrect as
* calculation of the polynomial points overflow silently
*/
do {
cout << "Enter secret number (a natural number): ";
cin >> secret;
} while(secret >= 1E9);
auto shares = sss_gen_shares(min_shares, max_shares, secret);
cout << endl;
cout << "Secret_shares (share number, share value):" << endl;
for (auto share : shares) {
cout << "(" << share.first << ", " << share.second << ")" << endl;
}
cout << endl;
cout << "Enter any " << min_shares << " shares:" << endl;
map<unsigned, unsigned> input_shares;
for (unsigned i = 1; i <= min_shares; i++) {
cout << "For input number " << i << ":" << endl;
unsigned temp_x;
cout << " Share number: ";
cin >> temp_x;
unsigned temp_y;
cout << " Share value: ";
cin >> temp_y;
input_shares[temp_x] = temp_y;
}
auto recovered_secret = sss_recover_secret(input_shares);
cout << endl;
cout << "Recovered secret: " << recovered_secret << endl;
}
/* Example session:
Enter minimum number of shares to unlock secret (at least three): 4
Enter total number of shares to generate (not less than the minimum): 7
Enter secret number (a natural number): 123456789
Secret_shares (share number, share value):
(1, 3351437161)
(2, 1499306213)
(3, 3156998537)
(4, 4029546837)
(5, 4116951113)
(6, 3419211365)
(7, 1936327593)
Enter any 4 shares:
For input number 1:
Share number: 7
Share value: 1936327593
For input number 2:
Share number: 2
Share value: 1499306213
For input number 3:
Share number: 3
Share value: 3156998537
For input number 4:
Share number: 1
Share value: 3351437161
Recovered secret: 123456789
*/
/* For total number of shares = n
* and minimum number of shares = k,
* generation of shares has
* Time Complexity = O(n),
* and recovery of secret value has
* Time Complexity = O(k^2).
*
* Overall program has
* Space Complexity = O(k).
*/