-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
SudukoSolver.cpp
120 lines (100 loc) · 2.47 KB
/
SudukoSolver.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/**
A backtracking algorithm to solve 9X9 suduko
0's in the input are treated empty cells
Assumption : Given configuration is correct
**/
#include <bits/stdc++.h>
using namespace std;
#define N 9
void display(int board[N][N]){
for(int i = 0; i < N; i++){
for(int j = 0; j < N; j++){
cout << board[i][j] << ' ';
}
cout << '\n';
}
}
// backtracking soln
bool solve(int board[N][N], int i, int j,
bool rows[N][N], bool cols[N][N], bool boxes[N][3][3]) {
if(i == 9)
return true;
if(board[i][j] == 0) {
for(int k=0; k<9; k++) {
if(rows[k][i] == false && cols[k][j] == false
&& boxes[k][i/3][j/3] == false) {
board[i][j] = k+1;
rows[k][i] = true;
cols[k][j] = true;
boxes[k][i/3][j/3] = true;
if(solve(board, i+j/8, (j+1)%9, rows, cols, boxes))
return true;
board[i][j] = 0;
rows[k][i] = false;
cols[k][j] = false;
boxes[k][i/3][j/3] = false;
}
}
return false;
} else
return solve(board, i+j/8, (j+1)%9, rows, cols, boxes);
}
void solveSudoku(int board[N][N], int x, int y) {
// write yopur code here
bool rows[N][N], cols[N][N], boxes[9][3][3];
// intialization
for(int i=0; i<N; i++)
for(int j=0; j<N; j++) {
rows[i][j] = false;
cols[i][j] = false;
}
// intialization
for(int i=0; i<N; i++)
for(int j=0; j<3; j++)
for(int k=0; k<3; k++)
boxes[i][j][k] = false;
for(int i=0; i<9; i++)
for(int j=0; j<9; j++)
if(board[i][j] != 0) {
int num = board[i][j]-1;
rows[num][i] = true;
cols[num][j] = true;
boxes[num][i/3][j/3] = true;
}
solve(board,0,0,rows,cols,boxes);
display(board);
}
int main() {
int arr[N][N];
// taking input
for (int i = 0; i < 9; i++)
for (int j = 0; j < 9; j++)
cin >> arr[i][j];
solveSudoku(arr, 0, 0);
return 0;
}
/**
Input :
3 0 6 5 0 8 4 0 0
5 2 0 0 0 0 0 0 0
0 8 7 0 0 0 0 3 1
0 0 3 0 1 0 0 8 0
9 0 0 8 6 3 0 0 5
0 5 0 0 9 0 6 0 0
1 3 0 0 0 0 2 5 0
0 0 0 0 0 0 0 7 4
0 0 5 2 0 6 3 0 0
Output :
3 1 6 5 7 8 4 9 2
5 2 9 1 3 4 7 6 8
4 8 7 6 2 9 5 3 1
2 6 3 4 1 5 9 8 7
9 7 4 8 6 3 1 2 5
8 5 1 7 9 2 6 4 3
1 3 8 9 4 7 2 5 6
6 9 2 3 5 1 8 7 4
7 4 5 2 8 6 3 1 9
Space Complexity : O(1)
Time Complexity : O(1)
The size of input is fixed, so the complexity does not change
**/